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Abstract 

 

In this paper, we are going to analyze the relations between different types of convergence of a random sequence, such as almost 

sure convergence, convergence in mean square, convergence in distribution and convergence in probability. The convergence in 

distributions says nothing about the relationship between the random variables 𝑋𝑛 and X, while for convergence in probability, 

the joint distribution of 𝑋𝑛 and X is relevant. 

In the main part of the paper, we are going to prove the theorem which argues that the convergence in probability implies 

convergence in distribution, and the opposite is not true. But if 𝑋𝑛 → 𝑐, where c is a constant, then 𝑋𝑛 → 𝑐, which mean that 

convergence in probability to a constant is equivalent to convergence in distributions. 

Also, we give some interesting examples. 

 

Keywords: random variable, random sequence, mean square, convergence in distributions. 

 

1. Introduction 
 

 One of the most important parts of probability theory concerns the behavior of sequences of random variables. 

This part of probability is often called “limit theory” or “asymptotic theory.” This concept is very important 

for statistical inference. Since statistics is all about gathering data, we will naturally be interested in what 

happens as we gather more and more data, hence our interest in this question. The paper develops appropriate 

methods of discussing convergence of random variables. 

  In the first part we will give definitions of different types of convergence and discuss how they are related. 

A sequence might converge in one sense but not another. Some of these convergence types are ''stronger'' than 

others and some are ''weaker.'' Consider a sequence of random variables 
1 2, ,...X X . This sequence might 

''converge'' to a random variable X . There are four types of convergence that we will discuss in this part: 

 

 Almost sure convergence. 

 Convergence in mean 

 Convergence in distribution, 

 Convergence in probability. 

 

An infinite sequence , 1,2,...nX n  , of random variable is called a random sequence.  

 

 

 

 

 

d p 
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2. Different Types of Convergence for Sequences of Random Variables 

 

2.1. Almost Sure Convergence: 

 

Definition 2.1.1. A sequence of random variables 
1 2, ,...X X converges almost surely, or with probability 

one, to the random variable X , shown by 
.a s

nX X , if 

 lim 1n
n

P X X


  . 

In some problems, proving almost sure convergence directly can be difficult. Thus, it is desirable to know 

some sufficient conditions for almost sure convergence. Here is a result that is sometimes useful when we 

would like to prove almost sure convergence. 
 

Theorem 2.1.1. Consider the sequence 
1 2, ,...X X . For any 0  , define the set of events 

 ,  for all .m nA X X n m     

Then 
.a s

nX X if and only if for any 0  , we have 

lim ( ) 1.m
m

P A


  

An important example for almost sure convergence is the strong law of large numbers. 
 

Theorem 2.1.3. (Strong law of large numbers) 

Let 
1 2, ,...X X be i.i.d random variable with a finite expected value   , .iE X i    Let 

1 2 .n
n

X X X
M

n

  
  

Then 
.

.
a s

nM    

 

2.2. Convergence in Mean: 

 

Definition 2.2.1. Let 1r   be a fixed number. A sequence of random variables 
1 2, ,...X X converges in the r-

th mean or in the rL  norm to a random variable X, shown by 
rL

nX X , if 

lim 0
r

n
n

E X X


  
 

. 

If 2r  , it is called the mean-square convergence, and it is shown by 
.

.
m s

nX X  
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Theorem 2.2.1. Let 1 .r s   If 
sL

nX X , then 
rL

nX X . 

 

2.3. Convergence in Distribution: 

 

Convergence in distribution is in some sense the weakest type of convergence.  

 

Definition 2.3.1 A sequence of random variables 
1 2, ,...X X converges in distribution to a random variable 

X , shown by 
d

nX X , if 

lim ( ) ( ),
nX X

n
F x F x


  

for all x at which ( )XF x  is continuous. 

 

2.4. Convergence in probability: 

Definition 2.4.1. A sequence of random variables 
1 2, ,...X X converges in probability to a random variable X

, shown by 
p

nX X , if 

 lim 0,  for all 0.n
n

P X X  


     

The most famous example of convergence in probability is the weak law of large numbers (WLLN) 

 

Theorem 2.4.1. (Weak law of large numbers). If 
1 2, ,...X X  are independent and identically distributed 

random variables with mean   , ,iE X i    then the average sequence defined by 

1 2 n
n

X X X
X

n

  
  

converges in probability to μ. It is called the "weak" law because it refers to convergence in probability.  

 

3. Main Results 

 

If a sequence of random variables converges in probability to a random variable X , then the sequence 

converges in distribution to X  as well. 
 

 
 

Fig 2.1. Relations between different types of convergence 

 

Convergence in mean and almost sure convergence are stronger than convergence in probability.  

There is no relation between almost sure and mean square convergence. 
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Theorem 3.1. The following relationships hold: 

a) 
.a s

nX X  implies that 
p

nX X .  

b) 
rL

nX X  implies that 
p

nX X .  

c) 
p

nX X implies that 
d

nX X .  

 

Proof.  a) For any 0  , 

 
1

 converges to ( )n nn
X X B 




  

With monotone increasing events 

 

( ) , 1,2,...n mm n
B X X n 




        

Therefore, 

    converges to X lim ( )n n
n

P X P B 


  

By monotonicity! 

If   converges to X 1,nP X  then  lim ( ) 1n
n

P B 


 becomes 

0 lim ( ) limc

n mm nn n
P B P X X 



 

           
 

By complementarity, whence 

lim 0n
n

P X X 


       

Another proof; 

The alternative definition of convergence in probability is given by 

   as nP X X n     

The alternative definition of almost convergence is given by 

 0,  for all 1 as kP X X k n n         

Then 

   
.

0,

1  for all 

                              1 as  (because )

So 

n k

a s

n

p

n

P X X P X X k n

n X X

X X



 

 

      

  



 

b)  For any 0  , we have 

    (since 1)

                         (by Markov's inequality).

r r

n n

r

n

r

P X X P X X r

E X X

 



     




 

Since by assumption  lim 0,
r

n
n

E X X


   we conclude 
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 lim 0,for all 0.n
n

P X X  


     

 

c) This proof is a little more complicated.  

Fix 0.   Then  

   

   

 

( ) ( ) , ,

        

        ( ) .

n n n n n n

n

n

F x P X x P X x X x P X x X x

P X x P X x

F x P X x

 

 

 

         

     

    

 

Also,  

     

 

( ) , ,

( ) .

n

n n

F x P X x P X x X x P X x X x

F x P X x

   



           

   
 

Hence, 

   ( ) ( ) ( ) .n n nF x P X X F x F x P X X              

Take the limit as n  to conclude that 

( ) liminf ( ) limsup ( ) ( ).n n
n n

F x F x F x F x 
 

      

This holds for all 0.   Take the limit as 0   and use the fact that F is continuous at x and conclude that 

lim ( ) ( )n
n

F x F x


 . 

The converse of Theorem 3.1. a), b) is not true in general. That is, there are sequences that converge in 

probability but not in mean or almost sure.  

Convergence in probability is stronger than convergence in distribution. That is, if 
p

nX X , then 
d

nX X . 

The converse is not necessarily true.  

A special case in which the converse is true is when 
d

nX c , where c is a constant. In this case, convergence 

in distribution implies convergence in probability. We can state the following theorem: 

Theorem 3.2. If 
d

nX c , where c is a constant, then 
p

nX c  

Proof. Since 
d

nX c , we conclude that for any 0,   we have 

 lim 0,

lim 1.
2

n

n

X
n

X
n

F c

F c
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We can write for any 0  , 

     

   

   

lim lim

                              lim lim

                              0 lim     (since lim =0)

                              

n

n n n
n n

n n
n n

n X
n n

P X c P X c P X c

P X c P X c

P X c F c

  

 

 

 

 

 

         

     

    

 lim
2

                              1- lim
2

                              0                                    (since lim =1).
2

n

n

n
n

X
n

X
n

P X c

F c

F c













 
  

 

 
  

 

 
  

 

 

Since  lim 0n
n

P X c 


   , we conclude that 

 lim 0,  for all 0,n
n

P X c  


     

which means .
p

nX c   

 

Example. Let 
1 2, ,...X X be a sequence of i.i.d. (0,1)Uniform random variable. Define the sequence nY as 

1 2min( , ,..., ).n nY X X X  

Prove the following convergence results independently. 

a) 0,
d

nY           b) 0,
p

nY            c) 0,  for 1,

rL

nY r           d) 
.

0.
a s

nY   

 

Solution.   

a) 0 :
d

nY  Note that  

0 0

( ) 0 1

1 1
nX

x

F x x x

x




  
 

 

Also, note that [0,1].
nYR  For 0 1y  , we can write  

    

 

1 2

1 2

1 2

( ) ( )

          1 ( )

          1 ( , ,..., )

          1 ( ) ( ) ( )(since 's are independent)

          1 1 ( ) 1 ( ) 1 ( )

          1 1 .

n

n

Y n

n

n

n i

X X X

n

F y P Y y

P Y y

P X y X y X y

P X y P X y P X y X

F y F y F y

y

 

  

    

    

    

  

 

Therefore, we conclude 

0 0
lim ( )

1 0nY
n

y
F y

y
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Therefore,  0.
d

nY   

b) 0 :
p

nY   Note that as we found in part a) 

0 0

( ) 1 (1 ) 0 1

1 1
n

n

Y

y

F y y y

y




    
 

 

In particular, note that nY  is a continuous random variable. To show 0,
p

nY  we need to show that 

 lim 0,  for all 0.n
n

P Y  


    

Since 0,nY  it suffices to show that 

 lim 0,  for all 0.n
n

P Y  


    

 

For (0,1),   we have 

   

 

 

1

                1  (since   is a continuous random variable)

                1 ( )

                1 .

n

n n

n n

Y

n

P Y P Y

P Y Y

F

 







   

  

 

 

 

Therefore, 

   lim lim 1

                        0,  for all (0,1].

n

n n
P Yn  



 
  

 
 

c) 0,  for all 1:

rL

nY r  By differentiating ( ),
nYF y we obtain 

1(1 ) 0 1
( )

0n

n

Y

n y y
f y

otherwise

   
 


 

Thus, for 1,r  we can write 
1

1

0

1

1

0

1

0

(1 )

           (1 )  (since 1)

1
           (1 ) (1 )   (integration by parts)

0

1
           .

1

r r n

n

n

n n

E Y ny y dy

ny y dy r

y y y dy

n
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Therefore,  

 lim 0.
r

n
n

E Y


  

d) 
.

0 :
a s

nY  We will prove 

 
1

,n

n

P Y 




    

Which implies 
.

0.
a s

nY  By our discussion in part b), 

   
1 1

1

1
                         (geometric series).

n

n

n n

P Y  





 

 

  


  

 
 

 

4. Conclusions  
 

The point of this paper is to study about the limiting behavior of a sequence of random variables 
1 2, ,...X X  

and the relationship between modes of convergences of a sequence of random variables. 

Modes of convergences of a sequence of random variables is important concept in probability theory, and its 

applications to statistics and stochastic processes, for that reason this is very interesting theory to study for. 
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