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Abstract 

 

B-splines are a class of functions with interesting and numerically useful properties. Spline functions are piecewise polynomials 

connected by the  1 2 ... na x x x b        distribution on the [ , ]a b  segment in ix  nodes.  B-spline is a combination 

of curves that pass through a certain number of points (control points) and form smooth curves. In this paper, we will consider 

B-splines as special partially nonnegative polynomials that disappear everywhere except in at several adjacent 
1[ , ]i ix x

 

intervals. From a numerical point of view, it is important to define B-splines through divided differences, with the possibility of 

computing higher-order B-spline recursively. B-spline approximations will be considered taking into account only the local 

behavior of the primitive function. We will use a numerically stable algorithm to efficiently calculate the estimate of the B-spline 

function. Some specific applications of B-spline calculated using the Mathematica program package and geometric interpretation 

of results are given. 

 

Keywords:  B-spline properties, Approximations via B-spline, Invers function formula, B-spline estimate, B-spline curve 

 

1. Introduction 

 

In general, the real function 𝑓: [𝑎, 𝑏] → 𝑅 is a piecewise polynomials of order 𝑘 and degree 𝑘 − 1, if for every 

𝑖 = 0, … , 𝑛 − 1, the restriction of the function 𝑓 on subintervals (𝑥𝑖, 𝑥𝑖+1) coincides with a polynomial 𝑝𝑖(𝑥) 
of degree less than or equal to 𝑘 − 1. In order to achieve injective mapping between 𝑓 and the sequence 

𝑝0(𝑥), 𝑝1(𝑥),… , 𝑝𝑛−1(𝑥), we define 𝑓 in nodes 𝑥𝑖(𝑖 = 0,… , 𝑛 − 1) so that the function becomes continuous 

on the right. Some derivations of spline function may also be continuous, depending on whether successive 

nodes are different or not. 

B-spline allow you to create and manage complex shapes and surfaces using a number of points.  

B-spline of the order n  are the basic functions of each spline function of the same order, defined on the same 

nodes, which means all possible spline functions can be built from a linear B-spline combination and there is 

only one unique combination for each spline function. 
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2. Definition of B-spline 

 

Let :xf R R  is function defined by  

 
, for
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The function 𝑓𝑥

𝑘(. ) consists of two polynomials of degree " 𝑘: 

0
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( ) ( ) , fork

P s s x
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Note that the function 𝑓𝑥
𝑘 depends on the real parameter 𝑥( and 𝑓𝑥

𝑘(𝑠) is defined as a function of 𝑥( that is 

continuous on the right for each fixed 𝑠(. For 𝑘 …1, 𝑓𝑥
𝑘(𝑠) is (𝑘 − 1) times continuously differentiable, i.e. of 

class 𝐶𝑘−1(𝑅) with respect to 𝑠( and 𝑥(. 

The divided difference 𝑓[𝑠𝑖, 𝑠𝑖+1, … , 𝑠𝑖+𝑘] of the real function 𝑓(𝑠) , is well defined for each segment 

𝑠𝑖, , 𝑠𝑖+1, , … , , 𝑠𝑖+𝑘of real numbers, even if 𝑠𝑗 are not different from each other. The only condition is that f  

be (𝑑𝑗 − 1) times differentiable for 𝑠 = 𝑠𝑗 , (𝑗 = 𝑖, 𝑖 + 1,… , 𝑖 + 𝑘) , if 𝑠𝑗occurs 𝑑𝑗 times in the subsegment 

𝑠𝑖, , 𝑠𝑖+1, , … , , 𝑠𝑗 ending in 𝑠𝑗. 

According to, 

                                             

( ) ( )
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,      for 𝑠 ≠ 𝑠𝑖+𝑘                           (2) 

Let 𝑘 …1 be an integer and 𝑠 = {𝑠𝑖}𝑖∈𝑍 any infinite distribution of real numbers 𝑠𝑖, where  

inf , sup and , ( )i i i i ks s s s i     „ Z
 

the i-th B-spline of the order k associated with 𝑠 is defined as a function of 𝑥: 

                                     

1
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                                   (3) 

Sometimes the text is written shorter only as 𝐵𝑖 or 𝐵𝑖,𝑘. 

𝐵𝑖,𝑘,𝑠(𝑥)  is well defined function for each 𝑥 ≠ 𝑠𝑖, 𝑠𝑖, , 𝑠𝑖+1, , … , , 𝑠𝑖+𝑘 and according to (3) is a linear 

combination of functions (𝑠𝑖 − 𝑥)+
𝑘−𝑑𝑖|𝑠 = 𝑠𝑗 , 𝑖, , 𝑗, , 𝑖 + 𝑘  if the value 𝑠𝑖  occurs 𝑑𝑗  times within the 

subsegment 𝑠𝑖, , 𝑠𝑖+1, , … , , 𝑠𝑗. 

In the following, we will examine what a B-spline of some order- i looks like. 

Let be a given continuous distribution in nodes 𝑠 = (𝑠𝑖). B-spline of order 1 in given nodes is a characteristic 

function of this distribution, i.e., the function 
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                                                   (4) 

All of these selected functions are continuous on the right. B-spline of order 1 must give in the sum a one, i.e.  

,1( ) 1, for every i

i

B s s
. 

In particular, 

1 ,1 0i i i is s B   Þ
. 

 

Higher order B-spline can be obtained, using first-order B-spline, by a recurrent relation:  

                                                    , , , 1 1, 1, 1(1 )i k i k i k i k i kB B B      
                                               (5) 

where is 

1
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Therefore, B-spline of order 2 is given by: 

                                                      ,2 ,2 1,2 1(1 )i i i i iB       
                                                  (6) 

and consists, in general, of two nontrivial linear parts that continuously merge to form piecewise linear 

functions that disappear outside the [𝑠𝑖, 𝑠𝑖+2) interval. Therefore, 𝐵𝑖,2 is called linear B-spline. 

 

                                         
a)                                                  b) 

 

Fig 1. B-spline of order 1 (Linear B-spline) 

   a) single nodes,   b) double nodes 

 

Furthermore, we compute B-spline of order 3:  

                  

 

      

,3 ,3 ,2 1,3 1,2

,3 ,2 ,3 1,2 1,3 1 1,3 2,2 2

1

1 1 1 1

i i i i i

i i i i i i i i i i

B B B 

         

 

     

  

         
               (7) 

In general, a B-spline of order 3 consists of 3 nontrivial square parts, and, according to Fig . 2 we see that they 

merge smoothly at the nodes and form piecewise quadratic functions of class 𝐶1 that disappear outside the 

[𝑠𝑖, 𝑠𝑖+2) interval. If e.g. 𝑠𝑖 = 𝑠𝑖+1 = 𝑠𝑖+2)  (i.e. 𝑋𝑖 = 𝑋𝑖+1 = 0 ), then consists of only one non-trivial part, 

which is continuous in triple node 𝑠𝑖, but is still class 𝐶1 in single node 𝑠𝑖+3, as shown in Fig . 2b). 
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a)                                                     b) 

Fig 2. B-spline of order 2 (Square B-spline) 

 a) single nodes,    b) triple nodes 

After the (k-1) step, the 𝐵𝑖,𝑘 is of the form: 

                                                            

1

, ,

1

i k

i k j k j

j

B  
 



 
                                                                (8) 

where each 𝛽𝑗,𝑘 is a polynomial of degree < 𝑘, because it’s the sum of the products of (k-1) linear polynomials. 

Thus, a B-spline of order 𝑘 consists of piecewise polynomials of order < 𝑘 (In fact, all 𝛽𝑗,𝑘 are exactly of 

degree (k-1)). 

 
 

Fig 3. B-spline of order 6 consists of 6 polynomials of degree 5. 

 

From this, we can conclude: 

(a)  𝐵𝑖,𝑘 is a partial polynomial of degree < 𝑘, that vanishes outside interval [𝑠𝑖, 𝑠𝑖+𝑘); 

(b)  𝐵𝑖,𝑘 is a zero-function only in the case 𝑠𝑖 = 𝑠𝑖+1; 

(c) 𝐵𝑖,𝑘 is positive on the open interval (𝑠𝑖, 𝑠𝑖+𝑘), because both 𝜌𝑖,𝑘 and (1 − 𝜌𝑖+1,𝑘) are positive on 

that interval (Example in Fig . 4).  
 

 
 

Fig 4. Two 𝜌 functions that are positive on the interval (𝑠𝑖, 𝑠𝑖+𝑘)   
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The basic properties of B-spline are given through the following theorem:  
 

Theorem 1[2] 

(a)   𝐵𝑖,𝑘,𝑠(𝑥) = 0, for 𝑥[𝑠𝑖, 𝑠𝑖+𝑘] 

(b)   𝐵𝑖,𝑘,𝑠(𝑥) > 0, for 𝑥 ∈ [𝑠𝑖, 𝑠𝑖+𝑘] 

(c)  ∑ 𝐵𝑖,𝑘,𝑠(𝑥) = 1, ∀𝑥𝑅𝑖  

The sum in (c), has finite number of  summands 𝐵𝑖,𝑘,𝑠(𝑥) different from zero. 

 

3. Compute of B-spline  

 

B-spline can be computed using recursion. The recursion is based on the generalization of the Leibniz formula 

for the derivation of the product of the two functions. 

 

Theorem 2[2] 

Let 𝑠𝑖, , 𝑠𝑖+1, , … , , 𝑠𝑖+𝑚. Suppose further that the function 𝑓(𝑠) = 𝑔(𝑠) ∙ ℎ(𝑠) is the product of two functions 

that differ for some 𝑠 = 𝑠𝑗 , 𝑗 = 𝑖, 𝑖 + 1… , 𝑖 + 𝑚,  therefore 𝑔 = [𝑠𝑖 , , 𝑠𝑖+1, , … , , 𝑠𝑖+𝑚]  and 

ℎ [𝑠𝑖 , , 𝑠𝑖+1, , … , , 𝑠𝑖+𝑚] are defined as (1). So it follows: 

1 1 1[ , ,..., ] [ , ,..., ] [ , ,..., ]
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j i

f s s s g s s s h s s s


    



 
  

 

Using Theorem 2 and relation (03), since 𝐵𝑖,𝑘(𝑥) ≡ 𝐵𝑖,𝑘,𝑠(𝑥), recursion is obtained: 
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i k i i k i
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B x B x B x

s s s s


  

   

 
 

 
                                  (9) 

 

Recursion (9) is used to compute all B-spline for a given fixed value 𝑥. Thus, for a given value of 𝑥, Theorem 

1 (a) gives 𝐵𝑖,𝑘(𝑥) = 0 for each 𝑖, 𝑘 and 𝑥[𝑠𝑖, 𝑠𝑖+𝑘] i.e. for 𝑖 … 𝑗 + 1. We will present this in Table 1 below, 

when 𝐵𝑖,𝑘(𝑥) disappears in positions where it is zero. 

3,4

2,3 2,4

1,2 1,3 1,4

,1 ,2 ,3 ,4

0 0 0 0

0 0 0 ( )

0 0 ( ) ( )

0 ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0

j

j j

j j j

j j j j

B x

B x B x

B x B x B x

B x B x B x B x



 

  

 
Table 1 

By definition, for 𝑥 ∈ [𝑠𝑖, 𝑠𝑗+1), the element 𝐵𝑗,1 = 𝐵𝑗,1(𝑥) = 1 determines the first column of Table 1. The 

remaining columns can be computed consecutively using recursion (19): each  𝐵𝑖,𝑘 element can be derived 

using two adjacent elements, 𝐵𝑖,𝑘−1 and  𝐵𝑖+1,𝑘−1. 

This method is numerically very stable, because only non-negative multiples of non-negative numbers are 

added together. 
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Example 1. For 𝑠𝑖 = 𝑖, (𝑖 = 0, 1, 2, … ) and 𝑥 = 3.5 ∈ [𝑠3, 𝑠4], the table of values of 𝐵𝑖,𝑘 is as follows: 

 

Table 2. 

 

, 1 2 3 4

0 0 0 0 1 48

1 0 0 1 8 23 48

2 0 1 2 3 4 23 48

3 1 1 2 1 8 1 48

4 0 0 0 0

i kB    
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¤ ¤ ¤
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k k k k

i

i

i

i

i
 

For example, 𝐵1,4 was obtained from: 

51
1,4 1,4 1,3 2,3

4 1 5 2

3.53.5
(3.5) (3.5) (3.5)

3.5 1 1 5 3.5 3 23
.

4 1 8 5 2 4 48

ss
B B B B

s s s s


  

 

 
    

 

 

 

4. B-spline approximation 

 

The B-spline approximation of the degree 𝑘 − 1 (order 𝑘) to the arbitrary function 𝑓: [0, 𝑛] → 𝑅 is: 

                                                
,[ ; ] ( ) ( )k i i k

i

W f x f B x
                                                  (10) 

where is 

                                               

1 2 1

1
( ,..., )

1
i i i i ks s s

k
      

                                                (10a) 

Approximation (10) contains k non-zero conditions. B-spline approximation is a local approximation, so it 

takes into account only the local behavior of the primitive function. 

For a given set of values {𝑧0, 𝑧1, … , 𝑧𝑙} , we want to find a unique set of functional values 

{𝑓(𝜏0), 𝑓(𝜏1), … , 𝑓(𝜏𝑙)} such that the B-spline approximation of 𝑓 interpolates given data, i.e. we want to find 

𝑓(𝜏𝑖) that satisfies: 

[ ; ] , 0,1,...,k i iW f z i l  
 

or in matrix form, we obtain the following relation 

                                                    
T TB F Z                                                                       (11) 

where is 

0, 0 1, 0 , 0

0, 1 1, 1 , 1

0, 1, ,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k k l k

k k l k

k l k l l k l

B B B

B B B
B

B B B

  

  

  

 
 
 
 
 
  , 
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 0 1( ), ( ),..., ( )lF f f f  
, 

 0 1, ,..., lZ z z z
. 

Matrix B  is a Gram matrix, which we know is invertible for different sets of nodes {𝜏𝑖}. The inverse function 

formula is then 

                                                                       
1T TF B Z                                                               (12) 

 

5. Estimate of B-spline 

 

The function 𝐹 defined on the set [0,𝑚] can be represented in the form[3]: 

                                                               
,( ) ( )i i k

i

F x A B x
                                                         (13) 

 

To estimate the B-spline function 𝐹 in (13) at point 𝑥 ∈ [𝑠𝑗 , 𝑠𝑗+1), without computing the basic functions 

𝐵𝑖,𝑘(𝑥), it is necessary to compute 𝑘 numbers 

, ( ), 1,...,i kB x i j k j  
, 

therefore, 𝐹(𝑥) can be written as: 

,

1

( ) ( )
j

i i k

i j k

F x A B x
  

 
. 

The function 𝐹(𝑥) can also be written using a lower-order B-spline, with certain polynomial coefficients 

[1]

, 1( ) ( ) ( )i i k

i

F x A x B x
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where is 
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More generally, 
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                                (14)  

we have 

                                                        

[ ]

,( ) ( ) ( )j

i i k j

i

F x A x B x
.                                             (15) 

Since 𝐵𝑖,1(𝑥) = 1  for 𝑥 ∈ [𝑠𝑖, 𝑠𝑖+1) and zero otherwise, it follows that 

[ 1]

1( ) ( ),k

i i i

i

F x A x s x s

  „

. 
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Therefore, if 𝑥 ∈ [𝑠𝑖, 𝑠𝑖+1), then 𝐹(𝑥) can be found by 𝐴𝑖−𝑘+1, … , 𝐴𝑖, by creating convex combinations using 

(14).The algorithm for computing the 𝐴𝑖
[𝑗]
(𝑥) components is based on (14) and (15), creating the following 

table 
[0]

1

[0] [1]

2 2

[0] [1] [ 2]

1 1 1

[0] [1] [ 2] [ 1]

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

i k

i k i k

k

i i i

k k

i i i i

A x

A x A x

A x A x A x

A x A x A x A x

 

   



  

 

 
Table 3 

The required 𝐹(𝑥) is in the lowest right entry of the table, which is 𝐴𝑖
[𝑘−1](𝑥). 

 

6. Computational examples of B-spline  

 
 

B-splines are widely used in various applications[5], and one of them is in B-spline curves. 

Definition: The B-spline curve of degree 𝑘 − 1 (order 𝑘) in relation to polygon 𝑃 is 

                                               
,

0

[ ] ( ), 0
m

m i i k m

i

K PB x x


 „P

                                             (16)  

given by the distribution 𝑠0, 𝑠2, … , 𝑠𝑚 so that 𝑠𝑖 < 𝑠𝑖+1. 

A periodic or closed B-spline curve occurs if the B-spline function is defined by the distribution 𝑠0, 𝑠1, … , 𝑠𝑚,

𝑠𝑖 < 𝑠𝑖+1, where 

                                                       ( /2)mod mi i k xx x 
                                                   (17) 

The interpretation of the previous algorithm geometrically leads to a constructive method for determining the 

point of the B-spline curve. Formula (14) in the conditions of the vertices 𝑃𝑖 of the polygon 𝑃 is of the form: 

 

                             
 

[ ]

[ 1] [ 1]

1

, for 0
( )

( ) 1 ( ), for 0

ij

i j j

i i

P j
P x

P x P x j  




 

                                (18)  

where is 

i

i k j i

x s

s s


 





. 

Example 2 

Let the closed polygon 𝑃0𝑃1…𝑃12 0 1 12...P P P
 be given, we want to find the points of the B-spline curve of order 

𝑘 = 4 corresponding to 𝑥 = 7.6, 𝑠𝑖 = 𝑖, for 𝑖 = 0,… ,13 according to (17) we have: 

( 2)mod13 ( 2) mod13i ix x i  
 

According to the algorithm (in the Table 3) for 𝑥 ∈ [𝑠𝑖, 𝑠𝑖+1) so 𝑠𝑖 = 7 satisfies the condition, i.e. 𝑖 = 9. 

According to (18) for 𝑗 = 𝑘 − 1 is 𝑃𝑖
[𝑘−1](𝑥) = 𝑃9

[3]
. 

Using a recursive algorithm (18), we compute: 
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[3] [2] [2]

9 9 8(7.6) (7.6) (1 ) (7.6)P P P   
 

                                                         where 

9

10 9

7.6 7.0
0.60

8 7

x s

s s


 
  

 
; 

 

[2] [1] [1]

9 9 8(7.6) (7.6) (1 ) (7.6)P P P   
 

                                                         where 

9

11 9

0.30
x s

s s



 


; 

 

[2] [1] [1]

8 8 7(7.6) (7.6) (1 ) (7.6)P P P   
 

                                                         where 

8

10 8

0.80
x s

s s



 


; 

 

[1]

9 9 8(7.6) (1 )P P P   
 

                                                         where 

9

12 9

0.20
x s

s s



 


; 

 

[1]

8 8 7(7.6) (1 )P P P   
 

                                                         where 

8

11 8

0.53
x s

s s



 


; 

 

[1]

7 7 6(7.6) (1 )P P P   
 

                                                         where 

7

10 7

0.87
x s

s s



 


. 

In Fig .5 we see the given vertices 𝑃𝑖 of the polygon 𝑃 and the corresponding interpolation of our example. 

 

  
Fig 5. 

In addition, if we assume that the polygon 𝑃 is a piecewise linear function 𝐹 , where 𝐹 is defined so that the 

B-spline curve is a parametric approximation of the B-spline to 𝐹, then according to (10) and (10a)  𝐹 write 

as: 



107 

 

( ) , 0,1,...,i i i m  F P
 

where                                                     
 1 2 1

1

1
i i i i ks s s

k
       

                                             (10a)* 

 

 

In this regard, we have the following example: 
 

Example 3 
 

Let the given open B-spline of order 𝑘 = 4 be determined by the polygon 𝑃0𝑃1…𝑃5 and 

0 1 2 3 4 5 6 7 8 90 1 2 3s s s s s s s s s s            
 

We will first, using (10a)*, compute the values of 𝜏𝑖:  

   0 1 2 3 1 2 3 4

1 1 1
0; ;

3 3 3
s s s s s s        

 

   2 3 4 5 3 4 5 6

1 1
1; 2;

3 3
s s s s s s        

 

   4 5 6 7 5 6 7 8

1 8 1
; 3

3 3 3
s s s s s s        

 

The function F  then has the value: 

0 1 2 3 4 5(0) , (1/3) , (1) , (2) , (8/3) , (3)P P P P P P     F F F F F F
. 

 

7. Conclusion 
 

The aim of this paper is to define B-spline in a way that clarifies its basic properties, and thus to apply it in 

some specific numerical procedures. Through the divided differences, a B-spline of a certain order was 

determined, which was easier to compute with a numerically stable recursive algorithm. Then, it was shown 

that the choice of B-splines is the most suitable for approximation of functions. The numerical example shows 

the B-spline curve, ie determining the point of the B-spline curve considering the vertices of a given polygon. 
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