SPECIFIC NUMERICAL PROPERTIES OF B-SPLINE IN FUNCTION APPROXIMATIONS

Bilall SHAINI ${ }^{1 *}$, Shpëtim REXHEPI ${ }^{\mathbf{2}}$, Eip RUFATI ${ }^{\mathbf{3}}$
${ }^{\text {I* Department of Mathematics, Faculty of Applied Sciences, University of Tetova, NMK }}$
${ }^{2}$ Department of Mathematics, Mother Teresa University, Skopje, NMK
${ }^{3}$ Department of Informatics, Faculty of Natural Sciences and Mathematics, University of Tetovo, NMK
*Corresponding author e-mail: bilall.shaini@unite.edu.mk

Abstract

B-splines are a class of functions with interesting and numerically useful properties. Spline functions are piecewise polynomials connected by the $\Delta=\left\{a=x_{1}<x_{2}<\ldots<x_{n}=b\right\}$ distribution on the $[a, b]$ segment in x_{i} nodes. B-spline is a combination of curves that pass through a certain number of points (control points) and form smooth curves. In this paper, we will consider B-splines as special partially nonnegative polynomials that disappear everywhere except in at several adjacent $\left[x_{i-1}, x_{i}\right]$ intervals. From a numerical point of view, it is important to define B-splines through divided differences, with the possibility of computing higher-order B-spline recursively. B-spline approximations will be considered taking into account only the local behavior of the primitive function. We will use a numerically stable algorithm to efficiently calculate the estimate of the B-spline function. Some specific applications of B-spline calculated using the Mathematica program package and geometric interpretation of results are given.

Keywords: B-spline properties, Approximations via B-spline, Invers function formula, B-spline estimate, B-spline curve

1. Introduction

In general, the real function $f:[a, b] \rightarrow R$ is a piecewise polynomials of order k and degree $k-1$, if for every $i=0, \ldots, n-1$, the restriction of the function f on subintervals $\left(x_{i}, x_{i+1}\right)$ coincides with a polynomial $p_{i}(x)$ of degree less than or equal to $k-1$. In order to achieve injective mapping between f and the sequence $p_{0}(x), p_{1}(x), \ldots, p_{n-1}(x)$, we define f in nodes $x_{i}(i=0, \ldots, n-1)$ so that the function becomes continuous on the right. Some derivations of spline function may also be continuous, depending on whether successive nodes are different or not.
B-spline allow you to create and manage complex shapes and surfaces using a number of points.
B-spline of the order n are the basic functions of each spline function of the same order, defined on the same nodes, which means all possible spline functions can be built from a linear B-spline combination and there is only one unique combination for each spline function.

2. Definition of B-spline

Let $f_{x}: \mathrm{R} \rightarrow \mathrm{R}$ is function defined by

$$
f_{x}(s)=(s-x)_{+}=\max (s-x, 0)= \begin{cases}s-x, & \text { for } s>x \\ 0, & \text { for } s, x\end{cases}
$$

and let there be a $f_{x}^{k}(s), k \ldots 0($, especially for $k=0$

$$
f_{x}^{0}(s)=\left\{\begin{array}{l}
1, \text { for } s>x \\
0, \text { for } s, x
\end{array}\right.
$$

The function $f_{x}^{k}($.$) consists of two polynomials of degree " k$:

$$
\left[\begin{array}{ll}
P_{0}(s)=0, & \text { for } s, x \\
P_{1}(s)=(s-x)^{k}, & \text { for } s>x
\end{array}\right.
$$

Note that the function f_{x}^{k} depends on the real parameter x (and $f_{x}^{k}(s)$ is defined as a function of x (that is continuous on the right for each fixed $s\left(\right.$. For $k \ldots 1, f_{x}^{k}(s)$ is $(k-1)$ times continuously differentiable, i.e. of class $C^{k-1}(R)$ with respect to $s($ and $x($.
The divided difference $f\left[s_{i}, s_{i+1}, \ldots, s_{i+k}\right]$ of the real function $f(s)$, is well defined for each segment $s_{i}, s_{i+1}, \ldots, s_{i+k}$ of real numbers, even if s_{j} are not different from each other. The only condition is that f be $\left(d_{j}-1\right)$ times differentiable for $s=s_{j},(j=i, i+1, \ldots, i+k)$, if s_{j} occurs d_{j} times in the subsegment $s_{i}, s_{i+1}, \ldots, s_{j}$ ending in s_{j}.
According to,

$$
\begin{gather*}
f\left[s_{i}, \ldots, s_{i+k}\right]=\frac{f^{(k)}\left(s_{i}\right)}{k!}, \quad \text { for } s_{i}=s_{i+k} \tag{1}\\
f\left[s_{i}, s_{i+1}, \ldots, s_{i+k}\right]=\frac{f\left[s_{i+1}, \ldots, s_{i+k}\right]-f\left[s_{i}, \ldots, s_{i+k-1}\right]}{s_{i+k}-s_{i}} \tag{2}
\end{gather*}
$$

Let $k \ldots 1$ be an integer and $s=\left\{s_{i}\right\}_{i \in Z}$ any infinite distribution of real numbers s_{i}, where

$$
\inf s_{i}=-\infty, \quad \sup s_{i}=+\infty \quad \text { and } \quad s_{i},, s_{i+k},(\forall i \in \mathrm{Z})
$$

the i-th B-spline of the order k associated with s is defined as a function of x :

$$
\begin{align*}
B_{i, k, s}(x) & =\left(s_{i+k}-s_{i}\right) f_{x}^{k-1}\left[s_{i}, s_{i+1}, \ldots, s_{i+k}\right] \\
& =f_{x}^{k-1}\left[s_{i+1}, \ldots, s_{i+k}\right]-f_{x}^{k-1}\left[s_{i}, s_{i+1}, \ldots, s_{i+k-1}\right] \tag{3}
\end{align*}
$$

Sometimes the text is written shorter only as B_{i} or $B_{i, k}$.
$B_{i, k, s}(x)$ is well defined function for each $x \neq s_{i}, s_{i}, s_{i+1}, \ldots, s_{i+k}$ and according to (3) is a linear combination of functions $\left(s_{i}-x\right)_{+}^{k-d_{i}} \mid s=s_{j}, i, j, i+k$ if the value s_{i} occurs d_{j} times within the subsegment $s_{i}, s_{i+1}, \ldots, s_{j}$.
In the following, we will examine what a B-spline of some order- ${ }^{i}$ looks like.
Let be a given continuous distribution in nodes $s=\left(s_{i}\right)$. B-spline of order 1 in given nodes is a characteristic function of this distribution, i.e., the function

$$
B_{i, 1}(s)=\chi_{i}(s)= \begin{cases}1, & \text { for } s_{i},, s<s_{i+1} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

All of these selected functions are continuous on the right. B-spline of order 1 must give in the sum a one, i.e.

$$
\sum_{i} B_{i, 1}(s)=1, \quad \text { for every } s
$$

In particular,

$$
s_{i}=s_{i+1} \quad \mathrm{P} \quad B_{i, 1}=\chi_{i}=0 .
$$

Higher order B-spline can be obtained, using first-order B-spline, by a recurrent relation:

$$
\begin{equation*}
B_{i, k}=\rho_{i, k} B_{i, k-1}+\left(1-\rho_{i+1, k}\right) B_{i+1, k-1} \tag{5}
\end{equation*}
$$

where is

$$
\rho_{i, k}(s)= \begin{cases}\frac{s-s_{i}}{s_{i+k-1}-s_{i}} & \text { for } s_{i} \neq s_{i+k-1} \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, B-spline of order 2 is given by:

$$
\begin{equation*}
B_{i, 2}=\rho_{i, 2} \chi_{i}+\left(1-\rho_{i+1,2}\right) \chi_{i+1} \tag{6}
\end{equation*}
$$

and consists, in general, of two nontrivial linear parts that continuously merge to form piecewise linear functions that disappear outside the $\left[s_{i}, s_{i+2}\right)$ interval. Therefore, $B_{i, 2}$ is called linear B-spline.

a)

b)

Fig 1. B-spline of order 1 (Linear B-spline)
a) single nodes, b) double nodes

Furthermore, we compute B-spline of order 3:

$$
\begin{align*}
B_{i, 3} & =\rho_{i, 3} B_{i, 2}+\left(1-\rho_{i+1,3}\right) B_{i+1,2} \\
& =\rho_{i, 3} \rho_{i, 2} \chi_{i}+\left[\rho_{i, 3}\left(1-\rho_{i+1,2}\right)+\left(1-\rho_{i+1,3}\right)\right] \chi_{i+1}+\left(1-\rho_{i+1,3}\right)\left(1-\rho_{i+2,2}\right) \chi_{i+2} \tag{7}
\end{align*}
$$

In general, a B-spline of order 3 consists of 3 nontrivial square parts, and, according to Fig. 2 we see that they merge smoothly at the nodes and form piecewise quadratic functions of class C^{1} that disappear outside the [s_{i}, s_{i+2}) interval. If e.g. $s_{i}=s_{i+1}=s_{i+2}$) (i.e. $X_{i}=X_{i+1}=0$), then consists of only one non-trivial part, which is continuous in triple node s_{i}, but is still class C^{1} in single node s_{i+3}, as shown in Fig . 2b).

Fig 2. B-spline of order 2 (Square B-spline)
a) single nodes, b) triple nodes

After the ($k-1$) step, the $B_{i, k}$ is of the form:

$$
\begin{equation*}
B_{i, k}=\sum_{j=1}^{i+k-1} \beta_{j, k} \chi_{j} \tag{8}
\end{equation*}
$$

where each $\beta_{j, k}$ is a polynomial of degree $<k$, because it's the sum of the products of $(k-1)$ linear polynomials. Thus, a B-spline of order k consists of piecewise polynomials of order $<k$ (In fact, all $\beta_{j, k}$ are exactly of degree ($k-1$)).

Fig 3. B-spline of order 6 consists of 6 polynomials of degree 5 .

From this, we can conclude:
(a) $B_{i, k}$ is a partial polynomial of degree $<k$, that vanishes outside interval [s_{i}, s_{i+k});
(b) $B_{i, k}$ is a zero-function only in the case $s_{i}=s_{i+1}$;
(c) $B_{i, k}$ is positive on the open interval $\left(s_{i}, s_{i+k}\right)$, because both $\rho_{i, k}$ and $\left(1-\rho_{i+1, k}\right)$ are positive on that interval (Example in Fig . 4).

Fig 4. Two ρ functions that are positive on the interval $\left(s_{i}, s_{i+k}\right)$

The basic properties of B-spline are given through the following theorem:

Theorem 1[2]

(a) $B_{i, k, s}(x)=0$, for $x \notin\left[s_{i}, s_{i+k}\right]$
(b) $B_{i, k, s}(x)>0$, for $x \in\left[s_{i}, s_{i+k}\right]$
(c) $\sum_{i} B_{i, k, s}(x)=1, \forall x R$

The sum in (c), has finite number of summands $B_{i, k, s}(x)$ different from zero.

3. Compute of \mathbf{B}-spline

B-spline can be computed using recursion. The recursion is based on the generalization of the Leibniz formula for the derivation of the product of the two functions.

Theorem 2[2]

Let $s_{i}, s_{i+1}, \ldots, s_{i+m}$. Suppose further that the function $f(s)=g(s) \cdot h(s)$ is the product of two functions that differ for some $s=s_{j}, j=i, i+1 \ldots, i+m$, therefore $g=\left[s_{i}, s_{i+1}, \ldots, s_{i+m}\right]$ and $h\left[s_{i}, s_{i+1}, \ldots, s_{i+m}\right]$ are defined as (1). So it follows:

$$
f\left[s_{i}, s_{i+1}, \ldots, s_{i+m}\right]=\sum_{j=i}^{i+m} g\left[s_{i}, s_{i+1}, \ldots, s_{j}\right] \cdot h\left[s_{j}, s_{j+1}, \ldots, s_{i+m}\right]
$$

Using Theorem 2 and relation (03), since $B_{i, k}(x) \equiv B_{i, k, s}(x)$, recursion is obtained:

$$
\begin{equation*}
B_{i, k}(x)=\frac{x-s_{i}}{s_{i+k-1}-s_{i}} B_{i, k-1}(x)+\frac{s_{i+k}-x}{s_{i+k}-s_{i+1}} B_{i+1, k-1}(x) \tag{9}
\end{equation*}
$$

Recursion (9) is used to compute all B-spline for a given fixed value x. Thus, for a given value of x, Theorem 1 (a) gives $B_{i, k}(x)=0$ for each i, k and $x \notin\left[s_{i}, s_{i+k}\right]$ i.e. for $i \ldots j+1$. We will present this in Table 1 below, when $B_{i, k}(x)$ disappears in positions where it is zero.

Table 1
By definition, for $x \in\left[s_{i}, s_{j+1}\right)$, the element $B_{j, 1}=B_{j, 1}(x)=1$ determines the first column of Table 1. The remaining columns can be computed consecutively using recursion (19): each $B_{i, k}$ element can be derived using two adjacent elements, $B_{i, k-1}$ and $B_{i+1, k-1}$.
This method is numerically very stable, because only non-negative multiples of non-negative numbers are added together.

Example 1. For $s_{i}=i,(i=0,1,2, \ldots)$ and $x=3.5 \in\left[s_{3}, s_{4}\right]$, the table of values of $B_{i, k}$ is as follows:
Table 2.

$B_{i, k}$	$k=1$	$k=2$	$k=3$	$k=4$
$i=0$	0	0	0	1.48
$i=1$	0	0	1.8	23×48
$i=2$	0	102	3.04	23×48
$i=3$	1	102	1.8	1.48
$i=4$	0	0	0	0

For example, $B_{1,4}$ was obtained from:

$$
\begin{align*}
B_{1,4}=B_{1,4}(3.5) & =\frac{3.5-s_{1}}{s_{4}-s_{1}} B_{1,3}(3.5)+\frac{s_{5}-3.5}{s_{5}-s_{2}} B_{2,3} \tag{3.5}\\
& =\frac{3.5-1}{4-1} \cdot \frac{1}{8}+\frac{5-3.5}{5-2} \cdot \frac{3}{4}=\frac{23}{48} .
\end{align*}
$$

4. B-spline approximation

The B-spline approximation of the degree $k-1$ (order k) to the arbitrary function $f:[0, n] \rightarrow R$ is:

$$
\begin{equation*}
W_{k}[f ; x]=\sum_{i} f\left(\tau_{i}\right) B_{i, k}(x) \tag{10}
\end{equation*}
$$

where is

$$
\begin{equation*}
\tau_{i}=\frac{1}{k-1}\left(s_{i+1}+s_{i+2}+, \ldots, s_{i+k-1}\right) \tag{10a}
\end{equation*}
$$

Approximation (10) contains $k_{\text {non-zero conditions. B-spline approximation is a local approximation, so it }}$ takes into account only the local behavior of the primitive function.
For a given set of values $\left\{z_{0}, z_{1}, \ldots, z_{l}\right\}$, we want to find a unique set of functional values $\left\{f\left(\tau_{0}\right), f\left(\tau_{1}\right), \ldots, f\left(\tau_{l}\right)\right\}$ such that the B-spline approximation of f interpolates given data, i.e. we want to find $f\left(\tau_{i}\right)$ that satisfies:

$$
W_{k}\left[f ; \tau_{i}\right]=z_{i}, \quad i=0,1, \ldots, l
$$

or in matrix form, we obtain the following relation

$$
\begin{equation*}
B=F^{T} Z^{T} \tag{11}
\end{equation*}
$$

where is

$$
B=\left[\begin{array}{cccc}
B_{0, k}\left(\tau_{0}\right) & B_{1, k}\left(\tau_{0}\right) & \cdots & B_{l, k}\left(\tau_{0}\right) \\
B_{0, k}\left(\tau_{1}\right) & B_{1, k}\left(\tau_{1}\right) & \cdots & B_{l, k}\left(\tau_{1}\right) \\
\vdots & \vdots & & \vdots \\
B_{0, k}\left(\tau_{l}\right) & B_{1, k}\left(\tau_{l}\right) & \cdots & B_{l, k}\left(\tau_{l}\right)
\end{array}\right],
$$

$$
\begin{gathered}
F=\left(f\left(\tau_{0}\right), f\left(\tau_{1}\right), \ldots, f\left(\tau_{l}\right)\right), \\
Z=\left(z_{0}, z_{1}, \ldots, z_{l}\right) .
\end{gathered}
$$

Matrix B is a Gram matrix, which we know is invertible for different sets of nodes $\left\{\tau_{i}\right\}$. The inverse function formula is then

$$
\begin{equation*}
F^{T}=B^{-1} Z^{T} \tag{12}
\end{equation*}
$$

5. Estimate of B-spline

The function F defined on the set $[0, m]$ can be represented in the form[3]:

$$
\begin{equation*}
F(x)=\sum_{i} A_{i} B_{i, k}(x) \tag{13}
\end{equation*}
$$

To estimate the B-spline function F in (13) at point $x \in\left[s_{j}, s_{j+1}\right.$), without computing the basic functions $B_{i, k}(x)$, it is necessary to compute k numbers

$$
B_{i, k}(x), \quad i=j-k+1, \ldots, j,
$$

therefore, $F(x)$ can be written as:

$$
F(x)=\sum_{i=j-k+1}^{j} A_{i} B_{i, k}(x)
$$

The function $F(x)$ can also be written using a lower-order B-spline, with certain polynomial coefficients

$$
F(x)=\sum_{i} A_{i}^{[1]}(x) B_{i, k-1}(x)
$$

where is

$$
A_{i}^{[1]}(x)=\frac{x-s_{i}}{s_{i+k-1}-s_{i}} A_{i}+\frac{s_{i+k-1}-x}{s_{i+k-1}-s_{i}} A_{i-1} .
$$

More generally,

$$
A_{i}^{[j]}(x)= \begin{cases}A_{i}, & j=0 \tag{14}\\ \frac{x-s_{i}}{s_{i+k-j}-s_{i}} A_{i}^{[j-1]}(x)+\frac{s_{i+k-j}-x}{s_{i+k-j}-s_{i}} A_{i-1}^{[j-1]}(x), & j>0,\end{cases}
$$

we have

$$
\begin{equation*}
F(x)=\sum_{i} A_{i}^{[j]}(x) B_{i, k-j}(x) \tag{15}
\end{equation*}
$$

Since $B_{i, 1}(x)=1$ for $x \in\left[s_{i}, s_{i+1}\right)$ and zero otherwise, it follows that

$$
F(x)=\sum_{i} A_{i}^{[k-1]}(x), \quad s_{i}, x<s_{i+1}
$$

Therefore, if $x \in\left[s_{i}, s_{i+1}\right)$, then $F(x)$ can be found by A_{i-k+1}, \ldots, A_{i}, by creating convex combinations using (14).The algorithm for computing the $A_{i}^{[j]}(x)$ components is based on (14) and (15), creating the following table

$$
\begin{array}{cclll}
A_{i-k+1}^{[0]}(x) & & & & \\
A_{i-k+2}^{00]}(x) & A_{i-k+2}^{[1]}(x) & & & \\
\vdots & \vdots & \ddots & \\
A_{i-1}^{[0]}(x) & A_{i-1}^{[1]}(x) & \cdots & A_{i-1}^{[k-2]}(x) & \\
A_{i}^{[0]}(x) & A_{i}^{[1]}(x) & \cdots & A_{i}^{[k-2]}(x) & A_{i}^{[k-1]}(x)
\end{array}
$$

Table 3
The required $F(x)$ is in the lowest right entry of the table, which is $A_{i}^{[k-1]}(x)$.

6. Computational examples of B-spline

B-splines are widely used in various applications[5], and one of them is in B-spline curves. Definition: The B-spline curve of degree $k-1$ (order k) in relation to polygon P is

$$
\begin{equation*}
K_{m}[\mathrm{P}]=\sum_{i=0}^{m} P_{i} B_{i, k}(x), \quad 0, x_{m} \tag{16}
\end{equation*}
$$

given by the distribution $s_{0}, s_{2}, \ldots, s_{m}$ so that $s_{i}<s_{i+1}$.
A periodic or closed B-spline curve occurs if the B-spline function is defined by the distribution $s_{0}, s_{1}, \ldots, s_{m}$, $s_{i}<s_{i+1}$, where

$$
\begin{equation*}
x_{i}=x_{(i-k / 2) \bmod x_{m}} \tag{17}
\end{equation*}
$$

The interpretation of the previous algorithm geometrically leads to a constructive method for determining the point of the B-spline curve. Formula (14) in the conditions of the vertices P_{i} of the polygon P is of the form:

$$
P_{i}^{[j]}(x)=\left\{\begin{array}{lr}
P_{i}, & \text { for } j=0 \tag{18}\\
\mu P_{i}^{[j-1]}(x)+(1-\mu) P_{i-1}^{[j-1]}(x), & \text { for } j>0
\end{array}\right.
$$

where is

$$
\mu=\frac{x-s_{i}}{s_{i+k-j}-s_{i}} .
$$

Example 2

Let the closed polygon $P_{0} P_{1} \ldots P_{12} P_{0} P_{1} \ldots P_{12}$ be given, we want to find the points of the B-spline curve of order $k=4$ corresponding to $x=7.6, s_{i}=i$, for $i=0, \ldots, 13$ according to (17) we have:

$$
x_{i}=x_{(i-2) \bmod 13}=(i-2) \bmod 13
$$

According to the algorithm (in the Table 3) for $x \in\left[s_{i}, s_{i+1}\right.$) so $s_{i}=7$ satisfies the condition, i.e. $i=9$. According to (18) for $j=k-1$ is $P_{i}^{[k-1]}(x)=P_{9}^{[3]}$. Using a recursive algorithm (18), we compute:

$$
P_{9}^{[3]}(7.6)=\mu P_{9}^{[2]}(7.6)+(1-\mu) P_{8}^{[2]}(7.6)
$$

$$
\text { where } \mu=\frac{x-s_{9}}{s_{10}-s_{9}}=\frac{7.6-7.0}{8-7}=0.60
$$

$$
P_{9}^{[2]}(7.6)=\mu P_{9}^{[1]}(7.6)+(1-\mu) P_{8}^{[1]}(7.6)
$$

$$
\text { where } \mu=\frac{x-s_{9}}{s_{11}-s_{9}}=0.30 \text {; }
$$

$$
P_{8}^{[2]}(7.6)=\mu P_{8}^{[1]}(7.6)+(1-\mu) P_{7}^{[1]}(7.6)
$$

$$
\text { where } \mu=\frac{x-s_{8}}{s_{10}-s_{8}}=0.80
$$

$$
P_{9}^{[1]}(7.6)=\mu P_{9}+(1-\mu) P_{8}
$$

$$
\text { where } \mu=\frac{x-s_{9}}{s_{12}-s_{9}}=0.20
$$

$$
\begin{gathered}
P_{8}^{[1]}(7.6)=\mu P_{8}+(1-\mu) P_{7} \\
\mu=\frac{x-s_{8}}{s_{11}-s_{8}}=0.53
\end{gathered}
$$

$$
P_{7}^{[1]}(7.6)=\mu P_{7}+(1-\mu) P_{6}
$$

$$
\text { where } \mu=\frac{x-s_{7}}{s_{10}-s_{7}}=0.87 \text {. }
$$

In Fig . 5 we see the given vertices P_{i} of the polygon P and the corresponding interpolation of our example.

Fig 5.
In addition, if we assume that the polygon P is a piecewise linear function F, where F is defined so that the B-spline curve is a parametric approximation of the B-spline to F, then according to (10) and (10a) F write as:

$$
\begin{gather*}
\mathrm{F}\left(\tau_{i}\right)=\mathrm{P}_{i}, \quad i=0,1, \ldots, m \\
\tau_{i}=\frac{1}{k-1}\left(s_{i+1}+s_{i+2}+\cdots+s_{i+k-1}\right) \tag{10a}
\end{gather*}
$$

In this regard, we have the following example:

Example 3

Let the given open B-spline of order $k=4$ be determined by the polygon $P_{0} P_{1} \ldots P_{5}$ and $s_{0}=s_{1}=s_{2}=s_{3}=0<s_{4}=1<s_{5}=2<s_{6}=s_{7}=s_{8}=s_{9}=3$
We will first, using (10a) ${ }^{*}$, compute the values of τ_{i} :

$$
\begin{array}{ll}
\tau_{0}=\frac{1}{3}\left(s_{1}+s_{2}+s_{3}\right)=0 ; & \tau_{1}=\frac{1}{3}\left(s_{2}+s_{3}+s_{4}\right)=\frac{1}{3} ; \\
\tau_{2}=\frac{1}{3}\left(s_{3}+s_{4}+s_{5}\right)=1 ; & \tau_{3}=\frac{1}{3}\left(s_{4}+s_{5}+s_{6}\right)=2 ; \\
\tau_{4}=\frac{1}{3}\left(s_{5}+s_{6}+s_{7}\right)=\frac{8}{3} ; & \tau_{5}=\frac{1}{3}\left(s_{6}+s_{7}+s_{8}\right)=3
\end{array}
$$

The function F then has the value:

$$
\mathrm{F}(0)=P_{0}, \quad \mathrm{~F}(1 / 3)=P_{1}, \quad \mathrm{~F}(1)=P_{2}, \quad \mathrm{~F}(2)=P_{3}, \quad \mathrm{~F}(8 / 3)=P_{4}, \quad \mathrm{~F}(3)=P_{5} .
$$

7. Conclusion

The aim of this paper is to define B-spline in a way that clarifies its basic properties, and thus to apply it in some specific numerical procedures. Through the divided differences, a B-spline of a certain order was determined, which was easier to compute with a numerically stable recursive algorithm. Then, it was shown that the choice of B -splines is the most suitable for approximation of functions. The numerical example shows the B -spline curve, ie determining the point of the B-spline curve considering the vertices of a given polygon.

References

[1]. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer Verlag, New York, 1993.
[2]. Larry L. Schumaker, Spline Functions: Computational Methods, SIAM, 2015, ISBN 978-1-611973-89-1.
[3]. Carl de Boor, A practical guide to splines, Springer,2001.
[4]. Carl de Boor, B-Spline Basics, http://128.105.2.28/debooron/bsplbasic.pdf
[5]. F. Andersson, Bezier and B-Spline Technology, Umea university Sweden, 2003.
[6]. J. S. Racine, Additive regression splines with irrelevant categorical and continuous regressors, Statistica Sinica 23, 515-541,(2013).
[7]. W. Zhang, L. Zhao, T. Gao, Topology optimization with closed B-splines and Boolean operations, Computer Methods in Applied Mechanics and Engineering, November 2016.
[8]. E. Demidov, An interactive introduction to splines, http://www.ibiblio.org/e-notes/splines/intro.htm

