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Abstract 

 

In this paper, we are going to analyze a wide class of topological spaces - the so-called metric spaces. These are sets in which is 

defined the notion of distance between any two points. It is well known that the distance function or metric defined on a metric 

space X induces a topology on that space X.   

In the second part of the paper, we are going to study well-known characterizations of the class of topological spaces, the topology 

of which is determined with the help of metrics - the so-called metrizable spaces.  

The question here is when is a topological space metrizable?  

The answer of this question is the main result of this research, which are some important criteria, who are necessary and sufficient, 

that topological spaces must possess in order to be metrizable. 
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Introduction 

 

1. Metric and Topological Spaces 

1.1. Metric Spaces: 

 

 Definition 1.1.1 Let 𝑋 be any non-empty set.  A  function  𝑑: 𝑋 × 𝑋 → ℝ  is said to be a metric or a distance 

on 𝑋 if the following conditions are satisfied: 

(M1) 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋; 

 (M2) 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦; 

 (M3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 (Symmetry); 

 (M4) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)   for all  𝑥, 𝑦, 𝑧 ∈ 𝑋 (Triangle inequality). 

 The pair (𝑋, 𝑑) is called a metric space and the elements of  𝑋 are called points. 

 

 Example 1.1.1 

 Let  X =ℝ𝑛. One can define on X the following distances: 

 for any two points  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑦 = (𝑦1, 𝑦2, … , 𝑦3) of  X; 

𝑑1(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1  ,  𝑑2(𝑥, 𝑦) = √∑ |𝑥𝑖 − 𝑦𝑖|2

𝑛
𝑖=1   and 

𝑑∞(𝑥, 𝑦) = 𝑠𝑢𝑝{|𝑥𝑖 − 𝑦𝑖|: 𝑖 = 1,2, … , 𝑛}. 
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 These three distances are equivalent, i.e. there are real constants k1, k2, k3  such that: 

d∞(x, y) ≤ k1d2(x, y) ≤ k2d1(x, y) ≤ k3d∞(x, y). 

 Let X be any arbitrary non-empty set and let us define for   x, y ∈ X 

𝑑(𝑥, 𝑦) = {
1  for  𝑥 ≠ 𝑦,
0   for 𝑥 = 𝑦,

  

 One can see that d  is a metric in X, called discrete metric and (X, d) the discrete metric space. 

 
 

Definition 1.1.2  Let  ,X d be metric space. Then 

1. The distance from a point
0x X  to a non-empty set A X  is defined by: 

    0, inf , :od x A d x x x A   

2. The distance between non-empty subsets ,A B X  is defined by: 

    , inf , : ,d A B d x y x A y B    

3. The diameter of the non-empty set is defined by: 

    sup , : ,diam A d x y x y A  . 

 

1.2. Topological Spaces: 

 

Definition 1.2.1  A topological space is a pair ( , )X   consisting of a non-empty set X  and a family   of 

subsets of  X  satisfying the following conditions: 

[T1]   ∈   and X ∈  . 

[T2] The union of any family of sets of   is again in  . 

[T3]  The intersection of any two (and hence any finite number of) sets of   is again in  . 

The family   is called a topology for X, and its members are called open sets of X. Hence the statements “G 

∈  ” and “G is open in  ” mean the same thing. Elements of X are called points. 

 

Example 1.2.1  

 Let X  be any non-empty space and   = {∅, X}. Clearly, the axioms for a topology (T1),(T2),(T3) 

given above hold.   = {∅, X}  is a topology in X  called the indiscrete topology. 

 Let X be any non-empty set and let   = P(E). Then   is a topology in X called the discrete 

topology. 

 Let X = {a, b, c} and  = {∅, {b} , X}. It is easily verified that  is a topology in X. 

 The real line.  Let  X = R.  Define the family   as follows: 

  U ∈  ⟺ for any x ∈ U, ∃δx > 0 such that  u ∈ U if   |x − u| < δx.   is a topology called   usual topology in 

R. 

 Let  ,X a b  and    , ,  a    .  It is easily verified that  is a topology in X. 

   is a topology called Sierpinski topology and ( , )X   is called the Sierpinski space. 
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Definition 1.2.2 Base of a topological space ( , )X   .  

A family B ∈  is called a base of the topological space ( , )X    if every non-empty open subset of  X  can be 

written as the union of the members of  B i.e.  

B   base of ( , )X   if  for every open set 𝐺 ∈ ℑ\{∅}, 𝐺 = ⋃ 𝐵𝑖𝑖∈𝐼 , where 𝐵𝑖 ∈ ℬ  ∀ 𝑖 ∈ 𝐼. 
 

Example 1.2.2 

The family of sets with one element   :x x X B  is the base of discrete  space  ,X D , for DB , and 

∀ G D ⇒   
x G

G x


 . 

Definition 1.2.3 Sub-base of a topological space  ,X   .  

Let   ,X  be a topological space. A sub-collectionS  of   is said to be a subbase for    if the set B   = {B 

|B is the intersection of finitely many members of S  } is a base for  . 

 

Example 1.2.3 

In R, the collection of all open intervals is a base for the usual topology. For a sub-base, one can take the open 

intervals of the form (−∞, a) and (b, ∞), since any open interval is either one of these or else the intersection 

of the two of them, i.e. if a < b, (a, b) = (−∞, b) ∩ (a, ∞); and any open set in R is a union of open intervals. 

 

Proposition 1.2.1  

A subset G  of a topological space X is open if and only if it is a neighborhood of all its points. That is for all 

x ∈ G, we can always find an open set Ux such that x ∈ Ux ⊂ G. 

 

Definition 1.2.4  A subset F of a topological space ( , )X  is said to be closed if its complement   X \ F is open. 

 

Proposition 1.2.2 Let X  be any set and suppose that F is a family of closed subsets of X. The F has the 

following properties,  

(F1) ∅ ∈ F and X ∈ F,  

(F2) the union of any two (and hence any finite number of) sets of F is again in F,  

(F3) The intersection of any family of sets of  F is again in F. 

 

Definition1.2.5 Let  ,X   be topological space and Y X . Topology  :y H G Y G     in Y  is 

called  relative topology  in Y or induced topology. Topological space  , YY   is called the subspace of 

topological space  ,X  . 
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2. Metrizable space 

 

2.1. Topology determined by metric: 

Let  ,X d be metric space. One can define the open ball and the closed ball with center x and radius r > 0 

respectively by:  

𝛣𝑑(𝑥, 𝑟) = {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝑟}-open ball 

𝛣𝑑[𝑥, 𝑟] = {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) ≤ 𝑟}-closed ball. 

The set     , : ,dS x r y X d x y r   is  called the sphere in space  ,X d  with center x and radius r > 0. 

Example 2.1.1 Let (X, d) be the  discrete metric space,  with  

𝑑(𝑥, 𝑦) = {
𝑟0  for 𝑥 ≠ 𝑦,
0   for 𝑥 = 𝑦,

  

Then, 𝛣(𝑥, 𝑟) = {𝑥}  for any  𝑟 < 𝑟0 and  Β(𝑥, 𝑟) = 𝑋  for any 𝑟 ≥ 𝑟0.  

 

Theorem 2.1.1 The family   , : ,  0x r x X r   B of all open balls of metric space  ,X d  is the base of 

a single topology in X . 

 

Definition 2.1.1 Let  ,X d  be metric space. The (single) topology in X , which is base is the family 

  , : ,  0x r x X r   B  of all open balls, is called metric topology in X  or the topology induced by the 

metric d, such topology is denoted by ( )d . 

The space   , d   is called metric topological space. 

 

Example 2.1.2 

 

 The topology ( )d  defined by the discrete metric in X  is the discrete topology in X  because  ∀ 

   ,  ,x X x r x    for any 0r r , is open set. 

 Since the open balls  in   2

2, d  are open circles in 2 and the family of such circles forms is the 

base of the usual topology U in 2 , we conclude that  2d  U . Similarly it is seen that the 

Euclidean metric 
2d  in  n  defines the usual topology in ,  1n n  . 

 

Until, every metric space is a topological space, then the inverse question is: let be  ,X    topological space, 

does there exist a metric d  in X  which it defines the topology  , i.e. such that ( )d ?  In the general 

case the answer to this question is no. let's give an example: 
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Example 2.1.3 

 

There is no metric in the set  0,1   which determines the topology   , , 0X   of Sierpinski space. 

Really, let's be :d X X    any metric in X . Since         0,0 , 0,1 , 1,0 , 1,1X X   and since 

 𝑑(𝑥, 𝑥) = 0 and  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) we conclude that    0,0 1,1 0d d   and      00,1 1,0d d r  . 

So,  

   
 për 

,    , 0,1 .
0 për 

or x y
d x y x y X

x y


  


 

Thus we showed that the only metric in the two-element set X  is the discrete metric, hence ( )d  is the 

discrete topology in X  which it is different from topology    of Serpinski space. 

 

Definition 2.1.2  Topological space is called metrizable  ,X    if there exists a metric  d  in X   which it 

defines the topology  ,  i.e. such that ( )d  . 

Consequently from the example above ( see example 2.1.2) we conclude that any discrete space X  is 

metrizable space  because the discrete metric in X   defines the discrete topology in X  . 

Also, the Euclidean space  ,n U   is metrizable space because the Euclidean metric 
2d  in  n   defines the 

usual topology U  in  n  . 

On the other hand, the Sierpinski space is not metrizable (see example 2.1.3). 

 

Theorem 2.1.2  For any subset A of metrizable space X  applies: 

    1      Int : , \ 0 ;A x X d x A     

    2      : , 0A x d x A    

where d  is the metric that defines the topology of space X . 

 

2.2. Some properties of metrizable spaces: 

 

-The continuous bijective function of topological spaces :f X Y  whose inverse
1 :f Y   is 

continuous is called homeomorphism or topological function. We say that topological space X  is 

homeomorphic or topologically equivalent to topological space Y  and we denote it X Y , if there 

exists a homeomorphism :f X Y . 

- The property V of topological space X is called topological property or topological invariant if that 

property also has any homeomorphic space with space X . 

-The property V  of a topological space  is called an inherited property if every subspace of the space

  also has that property. 
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Theorem 2.2.1 Metrizability is a topological property. If :h X Y is the homeomorphism of the topological 

space   ,X   over the metrizable space   ,Y d , then there exists metrics d   in X  such that '( )d   .  

 

Theorem 2.2.2 Metrizability is an inherited property. If  , ( )X d is metric space and  , ( )YY d  it is 

subspace, then the relative topology ( )Yd  in Y  is defined by the metric | :Y Y Yd d Y Y   , i.e    

( ) ( )Y Yd d   . 

 

Theorem 2.2.3 Every metrizable space is normal space and T1 (i.e T4-space). 

 

Theorem 2.2.4 Every metrizable space is: 

 

(1) T3 space (i.e., regular and T1-space) 

(2) Hausdorf space 

 

Theorem 2.2.5 Every metrizable space X  is the first countable space. 

 

Definition 2.2.1 A space X is said to be second countable if it has a countable base, i.e. there is a countable 

collection of open sets such that any open set can be expressed as a union of sets from this collection. 

The following example shows that metrizable space is not necessarily the second countable space. 

 

Example 2.2.1 The uncountable discrete space is metrizable space but, it is not the second countable space. 

 

3. Main Results 

 

3.1. Some theorems about the metrizability of topological spaces: The  main question  is; when is a topological 

space metrizable? A theorem which answers to that question is called a Metrization Theorem. One of the most 

important Metrization Theorems is the Urysohn’s Metrization Theorem[4] which gives the criteria which 

suffice for metrizability, while further the class of metrizable spaces is expanded and given by the main 

theorem of metrization, Smirnov's theorem.[5] 

 

Definition 3.1.1  Let be  0,1I   the unite segment of the real line  and let 
M

m

m M

I I


 be the topological 

product of the segments 
mI I  for each m M .  MI is called the weight cube  k M , where  k M is the 

cardinal number of the set M . In particular, the cube I , where is the set of natural numbers, is called the 

Hilbert cube. So, n

n

I I


 , nI =  0,1I   for any  n . 

Corollary 3.1.1  Hilbert cube defined by n

n

I I


 ,  0,1I   for any  n ,is metrizable  space. 

Theorem 3.1.1  Urysohn  The necessary and sufficient condition for the topological space to be metrzable is 

for it to be a  T3  space that satisfies the second axiom of countability. 

 

Proof. Since the Hilbert cube I  is metrizable  space and since metrizability is an inherited property and 

topological property(theorems  3.2.1 and 3.2.2) it follows that space X  is homeomorphic to a subspace of the 
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Hilbert cube or X  can be placed topologically in the Hilbert cube, so from the theorem which says:  X  is 3T

space, which satisfies the second axiom of countability, then and only then, when X   can be placed 

topologically in the Hilbert cube,  than X is a 3T  space that completes the second axiom of countability. ∎ 

 

Theorem 3.1.2 For every space X  that is 1T space these conditions are equivalent: 

(1)  X is the regular space that completes the second axiom of countability, 

(2) X  is homeomorphic to a subspace of the Hilbert cube I , 

(3) X  is separable metric space. 
 

The Urysohn’s Metrization Theorem gives only sufficient conditions for the metrizability of topological 

spaces, but does not give necessary conditions. The next metrization theorem, proved independently by Nagata 

and Smirnov gives a complete answer to the metrization theorem. 

 

Definition 3.1.2 
 

-The family G of subsets of topological space X  is called discrete if for each x X  there exists the 

neighborhood xU  of the point x  at X , which has an nonempty intersection with at most one member 

of  family G  . 

-The family G is called   discrete if it is equal to the union of a countable number of discrete 

families. 

- The family G  is called locally finite if for each x X there exists the neighborhood xU of the point 

x  at X ,  which has an nonempty intersection with at most a finite number members of family G . 

- The family G is called   locally finite if it is equal to the union of a countable number of locally 

finite families. 

 

Theorem 3.1.3  Bing Nagata Smirnov   

Let be X  regular space and 1T space . Then, the following propositions are equivalent: 

(1) X  is metrizable space; 

(2) X  has a   discrete base; 

(3) X  has the   locally finite base. 
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