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Abstract 

 

In this paper, we study the connections between linear codes and projective geometries over finite fields. Each of these two topics 

is interesting by itself and has been subject to substantial research. In the last decade, a lot of progress has been made in both 

areas. We introduce some of the basic ideas and connections between finite projective spaces and coding theory. We begin by 

studying projective geometries, from this, we introduce a very interesting action in projective planes which lead to many other 

interesting areas of finite geometry, coordination of the plane. We will coordinate the lines using point coordination.  

Our focus then shifts to coding theory and in particular three-dimensional linear codes. The linear code 𝐶𝑠,𝑡  𝑛, 𝑞 of s-spaces and 

t-spaces in a projective space 𝑃𝐺 (𝑛, 𝑞), 𝑞 = 𝑝𝑑, p prime, is defined as the vector space spanned over Fqby the rows of the 

incidence matrix of s-spaces and t-spaces.  Three-dimensional code applied on the constructed projective model: Fano Plane, like 

a3-dimensional vector space over F2. The Fano plane, like a model, occurs in algebraic geometry and geometric algebra in a 

number of cases, constructing a link between such important mathematical concepts. There are given different ways of 

constructing the model, taking in consider that it is impossible to label the Fano plane in such a way that all or just five of its lines 

would be ordinary.  
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1. Introduction 

 

 Let consider only the finite fields  𝐹𝑞  from where 𝑞 = 𝑝𝑑, and p a prime number. We suppose that some of 

the basic knowledge for finite fields and vector spaces are known [5]. For  𝐹𝑞
𝑥 a set of elements from 𝐹𝑞 not 

equal to zero, we define the followings:  

 

 Definition 1.1. The pair 𝐺 = (Ω, 𝐼)  is a finite geometry from where Ω is a finite set and Iis a symmetric and 

reflexive relation in Ω. Where I is known as an incidence relation in Ω. 

 

 Definition 1.2. An n- dimensional projective space on 𝐹𝑞 is the set of non- empty spaces of  𝐹𝑞
𝑛+1. It is written 

as 𝑃𝐺𝑛(𝐹𝑞) or as 𝑃𝐺𝑛(𝑞). 
 

 Remark 1.1.𝑃𝐺𝑛(𝑞)is a finite geometry, where Ω is the set of non- empty subspaces of 𝐹𝑞
𝑛+1, and I is a 

symmetric inclusion. One- dimensional subspaces of 𝐹𝑞
𝑛+1 are known as points, two- dimensional subspaces 

of 𝐹𝑞
𝑛+1 are known as straight lines, and n- dimensional subspaces of 𝐹𝑞

𝑛+1 are known as hyperplanes of a 

geometry. There are always 1 + 𝑞 +⋯+ 𝑞𝑛 points and each straight line contains 𝑞 + 1 points. 
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 Definition 1.3.  Let the 𝑎1, 𝑎2, … , 𝑎𝑚  be the points of 𝑃𝐺𝑛(𝑞). They are collinear if there exists a straight line 

which contains each 𝑎𝑖  point. We can say that the point 𝑝 = (𝑥0, … , 𝑥𝑛)  lies on straight line 

𝐿 = [𝑦0, … , 𝑦𝑛] if and only if 𝑥0𝑦0 + 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛 = 0. 

There is a more general definition of projective geometry. Every projective space, for 𝑛 ≥  3, is 𝑃𝐺𝑛(𝑞), if q 

is a prime number power[4,7]. Anyways, for 𝑛 =  2, there are so many examples of projective spaces that are 

not a part of 𝐹𝑞
𝑛+1 structure. In this case, we will describe the general definition of a projective plane:  

 

 Definition 1.4. An n- order projective plane is the set (𝑃, 𝐵, 𝐼) from where P is the set of points, B is the set 

of straight lines and Iis the incidence relation between them. The number of points is 𝑛2 + 𝑛 + 1 and the 

number of straight lines is also 𝑛2 + 𝑛 + 1. Each straight line contains 𝑛 + 1 points and 𝑛 + 1 straight lines 

intersect in each point. We require that each two points define a unique straight line and that each two straight 

lines intersect at a unique point[6]. 

 

 Definition 1.4’.Projective planes. A projective plane is a set of points and lines satisfying the following three 

axioms.  

(A1) Through every two points, there is exactly one line.  

(A2) Every two lines meet in exactly one point.  

(A3) There exist four points, no three of which are collinear 

 

 Example 1.1. (The smallest projective plane model) 𝑃𝐺2(2) is a non- empty subspace of 𝐹2
3. This is a 

projective plane of order 2, the Fano plane, which is the smallest projective plane. It consists of seven lines 

and seven points, with three points on a line and, dually, three lines per point, where every pair of points is 

connected by a line, every line intersects every other line, and there are four points such that no line contains 

more than two of them. It means 1 + 2 + 22 = 7points, each of them is a vector on a vectorial space. 

 

 Fig ure 1. 𝑃𝐺2(2) Fano plane[4]. This is the three- dimensional vectorial space on 𝐹2. We write the points 

with brackets, and straight lines with square brackets. It is worth to emphasize that although the straightlines 

seem to intersect, they do not unless the meet at any point.           

 

 
 

Fig 1. 

 
 There are thirty different ways to label the points of the Fano plane by integers from 1 to 7, two labeled Fano 

planes having zero, one or three lines in common, and each line occurring in six Fano planes. The set of thirty 

labeled Fano planes can be uniquely partitioned into two sets of fifteen elements each, such that any two 

labeled Fano’s in the same set have just one line in common. 
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 There are the constructed Fano planes, where for triples  , ,x y z  we add xyz . For a line xyz , we can take 

1 7x y z    we shall distinguish between the cases when x y c   and x y z  and call the former/latter 

ordinary/defective. 

 A point of the labeled Fano plane is said to be of order s, 0 ≤ s ≤ 3 if there are s defective lines passing through 

it; hence, in addition to two different kinds of lines, a labeled Fano plane can potentially feature up to four 

distinct types of points[5,6]. 

 The first 15, added like F group of Fano planes are given: 

     

     

1 2 3

4 5 6

7

124,136,157,235,267,347,456 , 127,136,145, 234,256,357,467 , 125,136,147,237,246,345,567 ,

125,134,167,236,247,357,456 , 127,135,146, 236,245,347,567 , 124,137,156,236,257,345, 467 ,

123,147,156

F F F

F F F

F

  

  

      

     

8 9

10 11 12

13

, 245,267,346,357 , 124,135,167,237,256,346,457 , 126,137,145,235,247,346,567 ,

123,145,167,246,257,347,356 , 126,134,157, 237,245,356,467 , 125,137,146,234,267,356, 457 ,

123,146,157,247,256,3

F F

F F F

F

 

  

      14 1545,367 , 127,134,156,235,246,367,457 , 126,135,147,234,257,367,456F F 

 

  
The second 15, added like F’ group of Fano planes are given: 

 

     

     

' ' '

1 2 3

' ' '

4 5 6

'

7

127,136,145,235,246,347,567 , 125,136,147, 234,267,357,456 , 124,136,157,237,256,345, 467 ,

127,134,156,236,245,357,467 , 124,135,167, 236,257,347,456 , 125,137,146,236,247,345,567 ,

123,

F F F

F F F

F

  

  

      

     

' '

8 9

' ' '

10 11 12

'

13

145,167,247,256,346,357 , 126,135,147,237, 245,346,567 , 124,137,156,235,267,346,457 ,

123,146,157,245,267,347,356 , 125,134,167, 237,246,356,457 , 126,137,145,234,257,356, 467 ,

123,147,

F F

F F F

F

 

  

      ' '

14 15156,246,257,345,367 , 126,134,157,235,247,367,456 , 127,135,146,234,256,367,457F F 

 

 

 A detailed inspection of each of the 30 labeled Fano planes shows that they fall, into eight different types, 

summarized in Table 1. The types   and   do not exist, because it is impossible to label the Fano plane in 

such a way that all or just five of its lines would be ordinary [6]. 

In the Table 1.each of eight types are being uniquely characterized by the number of points of every 

particular order. 
Table 1. The eight distinct types of labeled Fano plane 

 

 

Type 

Points of order 

0 1 2 3 

    7   0   0   0  

'  0  0  0  7  

  4  3  0  0  

'  0  0  3  4  

    2   3   1   0  

'  0  1 4  2  

  1 3  3  0  

'  0  3  3  1 

  0  6  0  1 

'  1 0  6  0  
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1.2. Coordinating the Projective plane: To show that 2(𝐾) planes are not the only examples of the projective 

planes, we need to find other methods to present projective planes and to show that when two given projective 

planes are isomorphic. 

Let consider   an n- order projective plane and let R be the set of symbols with the n- cardinal number so that 

1,2R, 1 2. We can spot the “ ” symbol which it does not belong to the R.  

We choose a straight line from  and we write it with the  l  symbol. Then we consider the two straight lines 

21,ll  so that the 21,ll , l  represent the sides of a triangle.  

We consider 12 , llYllX   and 21llO  . Let the I be a point non incident with the sides of the triangle. 

Now we will use the elements of the R set and the “” symbol to coordinate the  plane according to the O, 

X, Y, I rectangle[5]. Firstly, we consider the three other points: .,, 21  lABJlYIBlXIA  

To coordinate , we will associate the points from Yl \1 to the elements of set R, from where 0 will associate 

with O and one will associate with A. If c R corresponds to the point C 1l , then the coordinates of the 

point Care (0, c) which can be written as C (0, c). 

 

 
 

Fig 2. 

 

For any point D incident with 2l , D X, denote D’=JD 1l  and if D’(0,d), then D (0,d).  Since 0 is associated 

with the point O, then O(0,0). 

Let E be any non-incident point with l . 

If XE 1l  is the point (0, g) and YE 2l  is the point (f, 0), then point E(f, g). Thus every point from  l has 

single coordinates (x, y), where x,yR. 

Let M be a point incident with the line l ,M Y and l the line. If ),0(1 mll  , then the point M has the 

coordinate (m). 

We coordinate the point Y with ( )  and in this way, we coordinate every point of . 

Coordination mainly depends only on the choice of points O, X, Y, I, and the way in which we associate the 

elements from R with the points of  1l  \Y. 

(Fig ure 2 and Fig ure 3). 
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Fig 3. 

 

We will now coordinate the lines using point coordination[4,5]. Let l be any straight line not containing the 

point Y. 

 l =M(m) and 1l  l=(0,k)then we will denote the coordinates [m, k] on the line l. 

Let l be the line that contains the point Y and l l . If l 2l =(k’,0) we will denote the line l with [k'].  

At the end, we denote the line l with[ ]and in this way we have coordinated each line of  (Fig ure 4). 

 

 
 
 Fig 4. 

 

The Fano plane, like a model, occurs in algebraic geometry and geometric algebra in a number of cases, 

constructing a link between such important mathematical concepts as design theory, error-correcting codes, 

Latin squares, skew-Hadamard matrices, Klein’s quartic curve etc. [1]. 

Cardinalities of individual types, listed in Table 2. note a pronounced asymmetry between sets F and F’ of 

Fano planes constructed in Example 1.1.  

 
Table 2. Cardinalities of individual 8 types of Fano plane 

 

Type         1  
2  '  '  '  

1 '  
2 '  

Set F - 1 - 0 1 1 7 5 0 0 

Set F’ - 0 - 2 0 5 0 5 1 2 

Total - 1 - 2 1 6 7 10 1 2 
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2. Linear codes 

 

Theorem 2.1.Let p be a prime number. Then 𝐹𝑝 = 𝑍/𝑝𝑍 is a field. 

 

Theorem 2.2.For every power of prime number 𝑝𝑟 exists a field 𝐹𝑝𝑟 of that order. 

 

Definition 2.1. Let 𝐹𝑞be a field with q elements. One q-ary linear code of length n and dimension k is a linear 

subspace 𝐶 ⊆ 𝐹𝑞
𝑛of the vector space with dimension k. If its minimum distance is, then the parameters of 

𝐶[𝑛, 𝑘, 𝑑]𝑞 . 

For fixed q we want to construct the code[𝑛, 𝑘, 𝑑]𝑞with big d, big k and small n. Recall that a code with a 

minimum distance d allows the correction of transmission errors e, when 2𝑒 < 𝑑. 
A linear code C of length n and dimension k over a finite field F is a k-dimensional subspace of Fn, and is 

often called a linear [n, k] code over F[2]. 

Linear codes are block codes and besides their easy to grasp description, the advantages of linear codes lie in 

the algebraic structure of the code. In particular, they allow more efficient encoding and decoding algorithms 

compared to most other codes. 

 

Definition 2.1.  A code of length n over an alphabet A of size q, q ≥ 2, is a set of words constructed from A, 

i.e. n-tuples with entries in A.  

 

Definition 2.2.  A linear [n, k, d]-code C over Fq is a k-dimensional sub-space of the n-dimensional vector 

space Fn
q with minimum distance d. From this we see that |C| = qk.  

 

Definition 2.3.  The Hamming distance between to code words , n

qx y F , denoted  ,d x y  is the number of 

positions in which i ix y , for  1 2, ,..., nx x x x and  1 2, ,..., ny y y y . 

 

Definition 2.4. The minimum distance d of a linear code C is the smallest number of positions in which two 

different elements of C differ,    min , | , ,d d x y x y C x y   . 

 

Propositions 2.1.The minimum distance d of a linear code [𝑛, 𝑘, 𝑑]𝑞 is equal to its minimum weight. Here the 

weight of a coded word is the number of coordinates with a nonzero entry and the minimum is taken over the 

nonzero words of the code[1,2]. 

 

Definition 2.5.Let V be a vector space defined over the field K and𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉. A linear combination of  

𝑣1, 𝑣2, … , 𝑣𝑚is a decomposition in the form 
 

𝜆1𝑣1 + 𝜆2𝑣2 +⋯+ 𝜆𝑚𝑣𝑚 , 
 

where 𝜆𝑖 ∈ 𝐾. If there exists a linear combination such that ∑ 𝜆𝑖𝑣𝑖 = 0
𝑚
𝑖=1  and not all 𝜆𝑖 =0, then the set 

{𝑣1, … , 𝑣𝑚} is called linearly dependent. It is called linearly independent if it is not linearly dependent. 

Recall also that a base of a vector space is a maximum set of linearly independent vectors, and that the 

dimension of V is the number of elements in a base. Our linear codes are subspaces of 𝐹𝑞
𝑛, the group of all  

n-bundles, n-bundles form a vector space of dimension n[3,8]. 
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Definition 2.6. For a code, we have two matrices that determine the code:  

1. A generator matrix G of a linear [n, k, d]-code C is a k × n matrix over Fq whose rows form a basis 

of C. 

2. A parity check matrix H of a linear [n, k, d]-code C is a (n − k) × n matrix over Fq whose rows form 

a basis of  C
. 

 

Propositions 2.2. Let C be a [𝑛, 𝑘]𝑞-code and G be a matrix whose rows are words of C. The following 

properties are equivalent [8]: 

1. G is a generating matrix. 

2. G has range of k. 

3. There exists (k, k) - submatrix with a determinant other than zero. 

4. The lines of G are linearly independent 

 

2.1. Three dimensional codes and projective planes: In this section we want to learn how to interpret linear 

codes geometrically[1,2]. The starting point is a code generating matrix. We are limited to the case of three-

dimensional codes. The basic geometry is the design plane PG (2, q). 

 Remember the basics: 

The points of PG (2, q) are called one-dimensional subspaces of 𝐹𝑞
3, two-dimensional subspaces 

are called lines. There are 𝑞2  +  𝑞 +  1points and as many as lines.  

 Lines form the blocks of a model, a Steiner S system (2, q + 1, q2 + q + 1) (in particular each line 

has q + 1 point). The smallest projection plane is PG (2,2) (7 points, 7 lines, each line has 3 points, 

each point is on 3 lines, each pair of points is on exactly 1 line). This PG projection binary plane 

(2.2) is also known as the Fano plane. 

Each nonzero vector (x, y, z) of PG (2, q) generates a one-dimensional subspace, i.e. a point. 

We can label the points with these triplets. The difference between triplets and points is that triplets, which are 

multiple scales of each other, define the same point.  

The Fano Plane is described in Example1.1 [2]. As an example, consider the binary code with the generator 

matrix here is the relation to the geometry: we consider the G columns as points of S example, consider the 

binary code with the generating matrix, here is the relation to the geometry: we consider the G columns as 

points of PG(2,2). 

 

𝐺 = (
1  0  0  1  1  0  1
0  1  0  1  0  1  1
0  0  1  0  1  1  1

) . 

 

In this case each point of the Fano plane occurs exactly once as a column. A geometer would identify this C 

code (or this generating matrix). 
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Fig 5. Fano plane 

 

What is the minimum dimension d of this code [7,3, d]2 or more generally, what are the weights of the words 

[2,3,4]? 

We denote the lines G by 𝑧1, 𝑧2, 𝑧3 . Code words are linear combinations of 𝜆1𝑧1 + 𝜆2𝑧2 + 𝜆3𝑧3 .  

Fix a coordinate. The corresponding column of G is a point P of PG (2,2). The question arises when we will 

mark the code word with 0 in the column e G? Let P = (x, y, z). The notation 0 means 

𝜆1𝑥 + 𝜆2𝑥 + 𝜆3𝑥 = 0or(𝜆1, 𝜆2, 𝜆3) ∙ 𝑃 = 0. 

Let us summarize: each coordinate is indexed by a point P of PG (2,2) (the corresponding column of the 

generating matrix) [2,3].  

Each nonzero code word is given by a nonzero triple (𝜆1, 𝜆2, 𝜆3) (the coded word is 𝜆1𝑧1 + 𝜆2𝑧2 + 𝜆3𝑧3). This 

code word is denoted by 0 in this coordinate if and only if the point product disappears: 

 

(𝜆1, 𝜆2, 𝜆3) ∙ 𝑃 = 0. 
 

The point product represents a non-trivial linear equation at P = (x, y, z). These points P are therefore exactly 

the points of a two-dimensional subspace, in other words, of a line. Add again: each nonzero code word defines 

a straight line l (scale multiples define the same line). Each coordinate is indexed by a point P. The 

corresponding notation of the code word disappears (= 0) if P ∈ l. The weight of the coded word is therefore 

the number of dots which are not in l. This description is true for any three-dimensional code. In our example, 

the 7 coordinates are described by the 7 points of the Fano plane. Since each line has 3 points, there are 4 

points outside each line. We have seen that our code is a code [7,3,4]2, more precisely every nonzero word of 

our code has weight 4. 

 

3. Conclusions 

 

We have been able to introduce and discuss some of the many interesting structures in projective geometry. 

With this knowledge, we can continue to study in this area in the hope of finding new structures, larger k 

arches, or even more arches like the Glynn arc that is not a rational curve. The study of finite geometry is ever-

changing, and with more advances, we see more connections with other areas of combinatorics. Whenever we 

learn more about geometry, we can learn more and advance further into the world of coding theory. 

The above-described properties of labeled Fano planes as example of coordinated projective plane, clearly 

demonstrate that there is still much that this prominent object of discrete mathematics is likely to teach us.  
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