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Abstract 

 

Semigroup presentations have been studied for a long period. Since 1936 J. A. and H. S. M. have created Todd – Coxeter 

algorithm for solving enumeration problems of presentations. Here we present some semigroup presentations in terms of 

generators and defining relations. The aim of this paper is to investigate some properties about the relationship among abstract 

generators defined on semigroup, using computational methods and to study relationship between some semigroup and group 

presentation. 
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1.  Introduction 

 

Definition 1.1. [3, p.12] A set 𝑆 together with a binary operation, usually called multiplication is a grupoid. 

A grupoid 𝑆 satisfying the associative law is a semigroup. 

 

Definition 1.2. [3, p.12] An element 𝑒 of 𝑆 is a left(right) identity of 𝑆  if 𝑒𝑠 = 𝑠(se=s) or all 𝑠 ∈ 𝑆. Further, 

𝑒 is two-sided identity of 𝑆 if it is both a left and a right identity of 𝑆. A semigroup with an identity is a monoid. 

 

Definition 1.3.[3, p.13] If 𝐴  is a nonempty subset of 𝑆, then the intersection of all subsemigroups of 𝑆 

containing 𝐴 is the subsemigroup 𝑇  of  𝑆 generated by. If  𝑇 = 𝑆 , 𝑆 is generated by 𝐴 and  𝐴  is a set of 

generators for 𝑆. 

 

Proposition 1.4.[2, pg.22]. Let 𝐸 be an equivalence on a semigroup 𝑆. The equivalence 𝐸 is a congruence on 

𝑆 if and only if (xs, yt) ∈ E (𝑥𝑠, 𝑦𝑡) ∈ 𝐸 for all pairs (𝑥, 𝑦), (𝑠, 𝑡) ∈ 𝐸. 

 

Definition 1.5. [2, pg.22] Let 𝑆 be a semigroup and let 𝜌 be a congruence on 𝑆. The quotient semigroup 𝑆/𝜌 

is the semigroup whose elements are the congruence classes of 𝜌  and whose operation ∗  is defined by 

      , ,
p

a b ab a b S
 
   

. 

 

Definition 1.6. [2, p.3] An alphabet is a finite set whose elements are letters. 𝐴 word (over the alphabet A) is 

a finite sequence  𝑢 = (𝑎1, 𝑎2, … , 𝑎𝑛) of letters of 𝐴. The integer 𝑛 is the length of the word and is denoted |u|. 

 

Definition1.7. [5, pg.43] Let A  be alphabet and M 
 the set of all finite, nonempty words over 𝐴. Then 𝑀+ 

is a free semigroup with respect to the operation defined as follows: 

Given (𝑎1𝑎2…𝑎𝑛), (𝑏1𝑏2…𝑏𝑛) ∈ 𝑀
+  then (𝑎1𝑎2…𝑎𝑛), (𝑏1𝑏2…𝑏𝑛) = (𝑎1𝑎2…𝑎𝑚𝑏1𝑏2…𝑏𝑛) ∈ 𝑀

+  . 
 

Definition 1.8. [2,  pg.29]. A semigroup presentation is a pair 𝑃 = (𝑋, 𝑅) consisting of a set X  and a set of 
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pairs 𝑅𝑋+𝑥𝑋+. A semigroup is defined by the presentation 𝑃 if it is isomorphic to 𝑋+/𝑅, i.e. the quotient of 

the free semigroup 𝑋+ by the least congruence containing all the pairs in 𝑅. 

Definition 1.9. [2, pg.30] A semigroup presentation 
|X R

 is finite if 𝑋 and 𝑅 are finite. A semigroup is 

finitely presented if there exists some finite presentation that defines it, i.e. if it is isomorphic to 𝑋+|𝑅 for some 

finite presentation 
|X R

. 

A finitely presented semigroup (resp. finitely presented monoid) is a quotient of a free semigroup (resp. free 

monoid) on a finite number of generators over a finitely generated congruence on the free semigroup (resp. 

free monoid)., 

Proposition 1.10.[1, pg.3] Let 
|A R

 be a set and let 𝑆 be any semigroup. Then any mapping  ∶ 𝐴 → 𝑆 can 

be extended in a unique to a homomorphism ̅ ∶ 𝐴+ → 𝑆 and 𝐴+ is determined up to isomorphism by these 

properties. 

We say that 𝐴+ is the free semigroup on 𝐴. 

 

Proposition 1.11. [1, pg.3] Every(finitely generated) semigroup is a homomorphism image of a (finitely 

generated) free semigroup. 

 

Proposition 1.12. [1, pg.7] Let 𝑆 be a semigroup and let 𝐴 and 𝐵 be two finite generating sets for 𝑆 . If  𝑆 can 

be defined by a finite presentation in terms of generators 𝐴, then 𝑆 can be defined by a finite presentations in 

terms of generators 𝐵 as well. 

Proposition 1.13. [1, pg.3]  Let 𝑆 be a semigroup, let 𝐴  be a generating set for 𝑆 and let 𝑅𝐴+𝑥𝐴+ then 

|A R
 is a presentation for 𝑆 if and only if the following two conditions are satisfied: 

a) S  satisfies all the relations from R  

b) if ,u v A are two words such that satisfies the relation u v  then u v  is a consequence of .R  

 

2 . Semigroup Presentations 

 

Lemma 2.1. Let S  be a semigroup defined by the presentation 
2 2 2 1 2 1, : , ,n nP a b ab ba a a b b     . Then 

a) 2 2 2 2 and  ;k kab ba b ba ab a   

b)    
1 1

  and  ;
k k

ab ba a ba ab b
 

   

c)  
1 2k kba aba

  and  

1 2 ;
k kab bab

  

d) 2 1 2 1 and ;k kab aba ba bab    

Proof 

a) 2 2 2 2 1k k nba b ab b ab ab   . 

b) Prove that    2 2 2r k rab ba ab    for 1 .r k   

 2 2 2 2 21: k kr ab ba b ba ab      

1:r  Suppose that 1 1r k    and the assertion holds for r . We have 2 2 0k r  . 

       1 2 2 1 22 2 2 2 2 2 .
r r r k rk r k rab ba ab b ba ba b ba ab

        

If we take r k  we get      
12 2 .

k k k
ab ba ab ba ba ba a
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c) Prove that    
1 1 2 2k k r r kba ba ab a
  
  for 1 .r k   

     
1 2 21:

k k k kr ba ba ba ba ab a


    by ( )a . 

1r  : Suppose that 1 1r k    and the assertion holds for r . 

         
 1 1 1 12 2 2 2 2 2 2 2 2( 1) 2k k r k r k r k rr k r k r k r kba ba ab a ba ba b a ba ab b a ba ab a

            . 

If we take k r  we obtain  
1 2 2 2 2 2 2 2 .

k k k k k kba ba b a ab b a aba

    

d) By  b)  and c) we get    
1 2 2 1k k kab ba a aba a aba
     

 

Theorem 2.2.  Let S  be a semigroup defined by the presentation 
2 2 2 1 2 1, : , ,n nP a b ab ba a a b b     . Then 

a) 

10 1

68 2

3

if n

S if n

if n




 
 

 

b) pG G  has order 2  for n = 1  and pG G  has order 20 for n=2. 

 

Proof 

a) 
gap> F := FreeSemigroup("a","b"); 

<free semigroup on the generators [ a, b ]> 

gap> a := F.1;; b := F.2;; 

gap> rels:=[[a^3,a],[b^3,b],[a*b^2,b*a^2]]; 

[ [ a^3, a ], [ b^3, b ], [ a*b^2, b*a^2 ] ] 

gap> S := F/rels; 

<fp semigroup on the generators [ a, b ]> 

gap> Size(S); 

10 

gap> AsList(S); 

[ a, b, a^2, a*b, b*a, b^2, a^2*b, a*b*a, a*b^2, a^2*b^2 ]. 

 

gap> F := FreeSemigroup("a","b"); 

<free semigroup on the generators [ a, b ]> 

gap> a := F.1;; b := F.2;; 

gap> rels:=[[a^5,a],[b^5,b],[a*b^2,b*a^2]]; 

[ [ a^5, a ], [ b^5, b ], [ a*b^2, b*a^2 ] ] 

gap> S := F/rels; 

<fp semigroup on the generators [ a, b ]> 

gap> Size(S); 

68 

gap> AsList(S); 

[ a, b, a^2, a*b, b*a, b^2, a^3, a^2*b, a*b*a, a*b^2, b*a*b, b^2*a, b^3, a^4, a^3*b, 

a^2*b*a, a^2*b^2, (a*b)^2, a*b^2*a, a*b^3, (b*a)^2, b*a*b^2, b^2*a*b, b^3*a, b^4, 

a^4*b, a^3*b*a, a^3*b^2, a*(a*b)^2, a^2*b^2*a, a^2*b^3, (a*b)^2*a, (a*b)^2*b, 

a*b^2*a*b, a*b^3*a, a*b^4, b*a*b^3, b*(b*a)^2, b^2*a*b^2, a^4*b^2, a^2*(a*b)^2, 

a^3*b^2*a, a^3*b^3, a*(a*b)^2*a, a*(a*b)^2*b, a^2*b^2*a*b, a^2*b^3*a, a^2*b^4, 

(a*b)^2*b^2, a*b*(b*a)^2, (a*b^2)^2, b*a*b^4, a^4*b^3, a^2*(a*b)^2*a, 

a^2*(a*b)^2*b, a^3*b^2*a*b, a^3*b^3*a, a^3*b^4, a*(a*b)^2*b^2, a^2*b*(b*a)^2, 
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a*(a*b^2)^2, (a*b)^2*b^3, a^4*b^4, a^2*(a*b)^2*b^2, a^3*b*(b*a)^2, a^2*(a*b^2)^2, 

a*(a*b)^2*b^3, a^2*(a*b)^2*b^3 ]. 
 

b) 

gap>  F := FreeGroup("a","b"); 

<free group on the generators [ a, b ]> 

gap>  a := F.1;; b := F.2;; 

gap>  rels:=[[a^3,a],[b^3,b],[a*b^2,b*a^2]]; 

[ [ a^3, a ], [ b^3, b ], [ a*b^2, b*a^2 ] ] 

gap> G := F/rels; 

<fp group on the generators [ a, b ]> 

gap>  Size(G); 

2 

gap> AsList(S); 

gap> AsList(G); 

[ <identity ...>, a ] 

 

 

gap> F := FreeGroup("a","b"); 

<free group on the generators [ a, b ]> 

gap> a := F.1;; b := F.2;; 

gap> rels:=[[a^5,a],[b^5,b],[a*b^2,b*a^2]]; 

[ [ a^5, a ], [ b^5, b ], [ a*b^2, b*a^2 ] ] 

gap>  G := F/rels; 

<fp group on the generators [ a, b ]> 

gap> Size(G); 

20 

gap> AsList(S); 

gap> AsList(G); 

[ <identity ...>, a, a^-1, b, b^-1, a^2, a*b, a*b^-1, a^-1*b, 

a^-1*b^-1, b*a^-1, b^2, b^-1*a, a^2*b, a^2*b^-1, a*b*a^-1, a*b^2, 

a*b^-1*a, a^-1*b*a^-1, a^2*b*a^-1 ] 
 

Theorem 2.3. The semigroup  , , ; , ,A sgp a b c a bab b cbc c aca     and it’s corresponding group 

 * , , ; , ,A gp a b c a bab b cbc c aca    coincide. 

 

Proof 

a bab bacbc bacbaca    

=> 

bacbac e . 

Then 

,

.

a ea

c aca eaca ec

b cbc ecbc eb



  

  

 

So e  is a left neutral element. By symmetry, the element cabcab  is a right neutral element. But they coincide 

and are a unit element. Thus A  has a unit element e . 

Moreover, using the obvious symmetry of the presentation of A  again, we see that 

           
2 2 2 2 2 2

e bac cab acb bca cba abc     
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 *

3 , , ; , ,A gp a b c a bab b cbc c aca     

Thus a has a left inverse, namely cbacb  and also a right inverse, bcabc . Correspondingly b  and c  have 

inverses and A  is a group. It follows that semigroup A  coincides with the group *A . 

 
gap> F := FreeGroup("a","b","c"); 

<free group on the generators [ a, b, c ]> 

gap>  a := F.1;; b := F.2;; c:=F.2;; 

gap> rels:=[[a,b*a*b],[b,c*b*c],[c,a*c*a]]; 

[ [ a, b*a*b ], [ b, b^3 ], [ b, a*b*a ] ] 

gap> G := F/rels; 

<fp group on the generators [ a, b, c ]> 

gap> Size(G); 

infinity 

 

References 

 
[1]. Campbell, C. M., Mitchell, J. D., & Ruškuc, N. (2002). “Comparing semigroup and monoid presentations for finite 

monoids”. Monatshefte für Mathematik, 134(4), 287-293. 

[2]. Torpey, M.(2019). “Semigroup congruences: computational techniques and theoretical Applications” (Doctoral 

dissertation, University of St Andrews). 

[3]. Petrich, M. (1984). “Inverse semigroups” (No. 1). Wiley-Interscience. 

[4]. Froidure, V., & Pin, J. E. (1997). “Algorithms for computing finite semigroups”. 

[5]. Nwawuru Francis & Udoaka, Otobong Gabriel.(2018). “Free semigroup presentations”, Vol. 4 No. 3. 

 

  


