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Abstract 

 

The story of the fractional calculus began with that letter in 1695, answered by Leibniz. Classical analysis is not always sufficient, 

for real problems, constructed by using mathematical expressions, for solving their applications in engineering, science, and many 

other fields. The aim of this paper is to show the effectiveness of the numerical predictor-corrector method known as Fractional 

Adams-Bashforth-Moulton method (FABM) by its application on solving different types of nonlinear differential equations of 

fractional order 0 < 𝛼 < 1. It contains a short survey of basic numerical method (FABM) using the fractional derivative defined 

by Caputo. The equivalence between an ordinary differential equation of fractional order and a suitable Volterra integral equation 

is key to the approaches. The numerical results for the constructed method are compared with the exact solution for each equation 

by using absolute error (absolute difference between the exact and approximate solution at each integration point).The method is 

very simple and very much effective for solving differential equations of fractional order, it may be used. The behavior of the 

approximate time-series solutions are tabulated and plotted at different values of the fractional orders. During the work, it became 

necessary to use such symbolic software packages as Mathematica 12.1 in completing the required steps of the above procedures. 

 

Keywords: Fractional initial-value problem, Caputo fractional derivative, Volterra equation, Fractional Adams-Bashforth-

Moulton method, Exact solution. 

 

1. Introduction 

 

Fractional calculus tools have been known and used in different fields for a long time, the theory of fractional 

differential equations has recently begun to be studied. Differential equations of fractional order, have gained 

interest in many different scientific areas, especially in engineering real problems. As most of fractional 

differential equations do not have analytic solutions, we have to use methods to convert them to more accurate 

equations, like Volterra integral equation, for which we can then use various approximation and numerical 

techniques [1,2,3]. Several real-world phenomena in physics, engineering and science fields can be 

demonstrated successfully by developing a model using the theory of fractional calculus. Numerous problems 

in Physics, Chemistry, Engineering and Biological Sciences are better described in terms of differential 

equations of fractional order. The exact or semi-analytical solution to many physical problems can be 

understood by studying a physical phenomenon’s future, current and historical states.  

We use the Adams-Bashforth-Moulton method [4,5,7] to find approximated solutions to different equations, 

with or without exact solution. This is a well-known numerical method developed initially for solving ordinary 

differential equations of first order. After the modifications, it is a good scheme for solving differential 

equations of fractional order. It proceeds in two steps. Firstly, the prediction step calculates a rough 

approximation of the desired solution [6]. Secondly, the corrector step refines the initial approximation using 

another means. 
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 Definition 1.1.[1,2,9] A real function 𝑓(𝑡), 𝑡 > 0, is said to be in space 𝐶𝜇 , 𝜇 ∈ ℝ , if there exist a real 

number 𝑝(> 𝜇),  such that 𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡), where 𝑓1(𝑡) ∈ 𝐶[0,∞), and it is said to be in the space 𝐶𝜇
𝑚  if 

𝑓(𝑚) ∈ 𝐶𝜇 , 𝜇 ∈ ℕ. 

 

 Definition 1.2.[1,2,9] The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0 of a function  

𝑓(𝑡) ∈ 𝐶𝜇 , 𝜇 ≥ −1is defined as: 

                                                   𝐽𝛼𝑓(𝑡) =
1

Γα
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏
𝑡

0
                                                      (1.1) 

 Definition 1.3. [9] The Caputo fractional derivative of a function 𝑓(𝑡) is defined by: 

 

                𝐷𝑡
𝛼𝑓(𝑡) = 𝐽𝑛−𝛼𝐷𝑡

𝑛𝑓(𝑡) =
1

Γ(n−α)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏)𝑑𝜏
𝑡

0
                                 (1.2) 

 Two basic properties of Caputo fractional derivative that immediately follow from Definition 1.3 are: 

i. 𝐽𝛼𝐷𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓𝑘(0+)

𝑥𝑘

𝑘!

𝑛−1
𝑘=0 , 𝑡 > 0, 

ii. 𝐷𝑡
𝛼𝐽𝛼𝑓(𝑡) = 𝑓(𝑡). 

 Remark 1. In the definition for Caputo fractional derivative, we first differentiate 𝑓(𝑡), 𝑛 −times, then 

integrate it (𝑛 − 𝛼) times. If  𝑓(𝑡)is 𝑛 −times differentiable, then the 𝛼 − 𝑡ℎ order derivative will exist, where 

𝑛 − 𝛼 < 𝛼 ≤ 𝑛, otherwise this definition is not applicable [2,9]. Two main advantages of this definition are: 

i. Fractional derivative of a constant is zero, 

ii. Fractional differential equation of Caputo type has initial conditions of classical non-integer 

derivative type, in contrast to fractional differential equation of Riemann-Liouville type, where 

initial conditions are of fractional type.  
 

2. Numerical method  

 

Consider the initial value problem 

                       𝐷𝑡
𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),     𝑦(𝑘)(0) = 𝑦0

(𝑘)
                                                     (2.1) 

(𝑘 = 0, 1, 2, … , ⌈𝛼⌉ − 1), we will construct the numerical method of Adams-Bashforth-Moulton (FABM), 

assuming that a solution of (2.1) is sought on some time interval [0, 𝑇] , arbitrary  0 < 𝛼 < 𝑛  and  

𝑓: [0, 𝑇] × 𝐷 → ℝ, 𝐷 ⊆ ℝ. The interval [0, 𝑇] is divided into l subintervals [1,2,3]. Consider an equi-spaced 

grid with step length h, 𝑡𝑗 = 𝑗ℎ,    𝑗 = 0,1, … .Let 𝑦𝑗 denote the approximated solution at 𝑡𝑗 and 𝑦(𝑡𝑗) denote 

the exact solution of the initial value problem (2.1).  

2.1. Fractional Adams-Bashforth-Moulton Method  

In order to assure the existence and uniqueness of the solution to (2.1), it is assumed that 𝑓(𝑡, 𝑦(𝑡)) is 

continuous and fulfills the Lipschitz condition with respect to the second variable. On [0, 𝑇], for a uniform 

grid 𝑡𝑗 = ℎ𝑗 (𝑗 = 0, 1, … ,𝑁) and a constant time step denoted by ℎ =
𝑇

𝑁
, the goal is to approximate solution 

values 𝑦𝑗 ≈ 𝑦(𝑡𝑗) at the grid points [3,4,7].  

According to the theorem of existence and uniqueness of the solution, initial value problem (2.1) can be 

reformulated in terms of the weakly-singular Volterra integral equation at the point 𝑡𝑛:  

                     𝑦(𝑡𝑛) = ∑
𝑦0
(𝑘)

𝑘!

⌈𝛼⌉−1
𝑘=0 𝑡𝑘 + 

1

Γ(α)
∫ (𝑡𝑛 − 𝜏)

𝛼−1𝑓(𝜏, 𝑦(𝜏))𝑑𝜏
𝑡𝑛

0
                                  (2.2) 

The method immediately suggests a numerical approach in solving (2.2). On each subinterval[𝑡𝑘, 𝑡𝑘+1], 
𝑘 = 0, . . . , 𝑛 − 1, the function 𝑓(𝑡, 𝑦(𝑡))is approximated by constant value 𝑓(𝑡𝑘, 𝑦(𝑡𝑘+1)), using the fractional 

rectangular formula to obtain the main part of the algorithm, known as Adams-Bashforth part (FAB)[4,7]: 

                   𝑦[𝑗] = ∑
(𝑗ℎ)𝑘

𝑘!

⌈𝛼⌉−1
𝑘=0 𝑦0

(𝑘) + 
ℎ𝛼

Γ(α+1)
∑ 𝑏[𝑗 − 𝑘]𝑓(𝑘ℎ, 𝑦[𝑘])
𝑗−1
𝑘=0                                    (2.3) 
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where 𝑏[𝑗 − 𝑘] are the weights which depend only on the difference (𝑗 − 𝑘) because of the convolution 

structure of 𝑏𝑘,𝑗:  

                                                    𝑏𝑘,𝑗 =
(𝑗−𝑘)𝛼−(𝑗−𝑘−1)𝛼

Γ(α+1)
                                                                    (2.4) 

(FAB) part is a natural candidate for a predictor in the process of constructing the predictor- corrector method 

FABM (the Adams-Moulton method can be constructed in similar way like FAB).  

The FABM method is said to be Predict-Evaluate-Correct-Evaluate type because an initial approximation 𝑝 , 
the so-called predictor, is evaluated first:  

                           𝑝 = ∑
(𝑗ℎ)𝑘

𝑘!

⌈𝛼⌉−1
𝑘=0 𝑦0

(𝑘) + 
ℎ𝛼

Γ(α+1)
∑ 𝑏[𝑗 − 𝑘]𝑓(𝑘ℎ, 𝑦[𝑘])
𝑗−1
𝑘=0                                   (2.5) 

Then the method gives the corrector formula:  

𝑦[𝑗] = ∑
(𝑗ℎ)𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

𝑦0
(𝑘) + 

ℎ𝛼

Γ(α + 2)
∑(𝑓(𝑗ℎ, 𝑝) + (𝑗 − 1)𝛼+1 − (𝑗 − 𝛼 − 1)𝑗𝛼 ∙ 𝑓(0, 𝑦[0]) +∑𝑎

𝑗−1

𝑘=0

[𝑗 − 𝑘]𝑓(𝑘ℎ, 𝑦[𝑘]))

𝑗−1

𝑘=0

 

(2.6) 

where 𝑝 represents FAB, which in this case acts like a predictor. The weight 𝑎[𝑗 − 𝑘] in the corrector 𝑦[𝑗]is 

given by  

                   𝑎[𝑗 − 𝑘] =

{
 
 

 
 

(𝑗−1)𝛼+1−(𝑗−𝛼−1)𝑗𝛼

Γ(α+2)
, 𝑖𝑓 𝑗 = 0

(𝑗−𝑘+1)𝛼+1+(𝑗−𝑘−1)𝛼+1−2(𝑗−𝑘)𝛼+1

Γ(α+2)
 , 𝑖𝑓 𝑗 ∈ [1, 𝑘 − 1]

1, 𝑖𝑓 𝑗 = 𝑘

                                  (2.7) 

 

For 0 < 𝛼 < 1,  denoting (2.5) with 𝑝 ≡ 𝑦𝑝[𝑗] and (2.6) with 𝑦[𝑗] ≡ 𝑦𝑐[𝑗], the fractional Adams–Bashforth–

Moulton (FABM) formula is:  

𝑦𝑝[𝑗] = 𝑦0 + 
ℎ𝛼

Γ(α + 1)
∑𝑏[𝑗 − 𝑘]𝑓(𝑘ℎ, 𝑦[𝑘])

𝑗−1

𝑘=0

 

𝑦𝑐[𝑗] = 𝑦0 + 
ℎ𝛼

Γ(α + 2)
∑(𝑓(𝑗ℎ, 𝑦𝑝[𝑗]) + (𝑗 − 1)𝛼+1 − (𝑗 − 𝛼 − 1)𝑗𝛼 ∙ 𝑓(0, 𝑦[0])

𝑗−1

𝑘=0

+∑𝑎

𝑗−1

𝑘=0

[𝑗 − 𝑘]𝑓(𝑘ℎ, 𝑦[𝑘])) 

                                                                                                                                                    (2.8) 

3. Applications 

 

Example 3.1. Let consider the differential equation of fractional order  0 < 𝛼 < 1 [1]:   

                                      𝐷𝛼𝑦(𝑡) = 𝑡 + 𝑦2,   𝑦(0) = 0                                                                (3.1) 

The equation (3.1) do not have the exact analytical solution. We will find the approximated ones using (FABM) 

for different values of  0 < 𝛼 < 1, 𝛼 = 0.5, 𝛼 = 0.7 and 𝛼 = 0.9.  The exact solution of (3.1) exist for 𝛼 =
1 , the comparison of the method will be done at this case.Using (2.8) there are found the following 

approximated time series. 
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Fig 1. Time-series solution𝑦(𝑡) versus tof (3.1) for 𝛼 = 0.5, 𝑡 ∈ [0,1], ℎ = 0.01 using (FABM) method (red\solid line) 

 

a) b)  

 
Fig 2. Time-series solution𝑦(𝑡) versus t of (3.1) for 𝛼 = 1, 𝑡 ∈ [0,1],ℎ = 0.01  a) using FABM (black/solid line), b) plotting the 

exact integration curve𝑦 = −1 + 𝑒𝑡 − 𝑡 of (3.1) (blue/solid line) 

 

The results obtained by (FABM) are shown for different values of𝛼 = 0.5, 𝛼 = 0.7  and 𝛼 = 0.9  and 

compared for 𝛼 = 1with the exact solution using the absolute error. 

 
Table 1. Partial data values of the time-series 𝑦(𝑡) for increasing t of the numerical approximated solutions  

                of (3.1) using (FABM) and exact solution of (3.1) for standard form 𝛼 = 1, as well as the corresponding values  

                of absolute error between the FABM and exact solution for 𝛼 = 1. 

 

Time 

𝒕 ∈
[𝟎, 𝟏] 

(FABM) 

Exact solution 

for v=1 

Absolute Error 

for v=1 v=0.5 v=0.7 v=0.9 v=1 

0.01 0.000752 0.000258 0.0000867 0.00005 0.0000502 0.0000002 

0.03 0.00391 0.001668 0.0006994 0.00045 0.00045453 0.0000045 

0.05 0.008417 0.003976 0.001846 0.00125001 0.0012711 0.0000211 

0.07 0.013955 0.007047 0.0034986 0.00245008 0.00250818 0.0000581 

0.09 0.02037 0.010806 0.0056403 0.00405028 0.00417428 0.0001240 

0.11 0.027566 0.015206 0.0082593 0.00605078 0.00627807 0.0002273 

0.13 0.035482 0.020212 0.0113464 0.00845182 0.00882838 0.0003766 

0.15 0.044074 0.025797 0.0148948 0.0112537 0.0118342 0.0005805 

0.17 0.05331 0.031941 0.0188988 0.014457 0.0153049 0.0008479 

0.19 0.063169 0.038629 0.023354 0.0180623 0.0192496 0.0011873 

0.21 0.073636 0.045848 0.0282571 0.0220703 0.0236781 0.0016078 

0.23 0.084701 0.053589 0.0336053 0.026482 0.0286 0.0021180 
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In all numerical simulations, we take the integration step-size h = 0.01, and the integration time-span is  

t ∈ [0, 1]. It is seen that all the curves are characterized with a typical exponential-like increase as t → ∞. The 

numerical methods gradually diverge from the exact solution as the time rises, and in this case (FABM) is 

slightly a good approximation at large time values. 

 

Example 3.2. Let consider the inhomogeneous linear equation [8] for 0 < 𝛼 < 1, 

                               

   
   

2 1
22

3 2

t t
D y t y t t t

 


 

 

    
   

,  0 0y 
                                   

(3.2) 

The exact solution of (3.2) using the analytical method of Laplace Transform is 2( )y t t t  . 

The results are shown in Fig ure 3, for 0.95  , step size 0.01h   and time  0,10t . 

a)      b)  

 
Fig 3. Time-series solution 𝑦(𝑡) versus t of (3.2) for 𝛼 = 0.95, 𝑡 ∈ [0,1], ℎ = 0.01  a) using FABM (red/solid line), b) plotting the 

exact integration curve 𝑦 = 𝑡2 − 𝑡 of (3.2) (blue/solid line) 

 

 

 

 

 

 

 

 

 

 

0.25 0.096361 0.061846 0.0393969 0.0312987 0.0340254 0.0027267 

0.27 0.108614 0.070613 0.0456308 0.0365216 0.0399645 0.0034429 

0.29 0.121465 0.079888 0.0523065 0.0421525 0.0464275 0.0042750 

0.3 0.128117 0.084715 0.0558101 0.0451215 0.0498588 0.0047373 

… … … … … … … 

0.9 1.09589 0.676774 0.499672 0.437472 0.559603 0.12213 

0.91 1.14049 0.694813 0.512198 0.448484 0.574323 0.12584 

0.93 1.24039 0.732398 0.537993 0.47111 0.604509 0.13340 

0.95 1.35848 0.772159 0.564824 0.494571 0.63571 0.14114 

0.97 1.50177 0.814321 0.59275 0.518905 0.667944 0.14904 

0.99 1.68174 0.859146 0.621838 0.544153 0.701234 0.15708 

1 1.79129 0.88265 0.636839 0.557134 0.718282 0.16115 
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Table 2. Partial data values of the time-series 𝑦(𝑡) for increasing t of the numerical approximated solutions  

          of (3.2) using (FABM) and exact solution of (3.2) for standard form 𝛼 = 0.95, as well as the corresponding values 

 of absolute error between the FABM and exact solution for 𝛼 = 0.95. 

 

Time 𝒕 ∈
[𝟎, 𝟏𝟎] 

FABM for 

𝜶 = 𝟎. 𝟗𝟓 

Exact solution for 

𝜶 = 𝟎. 𝟗𝟓 Absolute error 

0.01 -0.00533877 -0.0099 0.0045612 

0.03 -0.0249456 -0.0291 0.0041544 

0.05 -0.0435512 -0.0475 0.0039488 

0.07 -0.0613081 -0.0651 0.0037919 

0.09 -0.0782408 -0.0819 0.0036592 

0.11 -0.0943585 -0.0979 0.0035415 

0.13 -0.109666 -0.1131 0.0034340 

0.15 -0.124165 -0.1275 0.0033350 

0.17 -0.137857 -0.1411 0.0032430 

0.19 -0.150745 -0.1539 0.0031550 

0.21 -0.162827 -0.1659 0.0030730 

0.23 -0.174106 -0.1771 0.0029940 

0.25 -0.184582 -0.1875 0.0029180 

0.27 -0.194254 -0.1971 0.0028460 

0.29 -0.203123 -0.2059 0.0027770 

0.31 -0.21119 -0.2139 0.0027100 

0.33 -0.218454 -0.2211 0.0026460 

0.35 -0.224916 -0.2275 0.0025840 

0.37 -0.230576 -0.2331 0.0025240 

0.39 -0.235434 -0.2379 0.0024660 

0.41 -0.23949 -0.2419 0.0024100 

0.43 -0.242745 -0.2451 0.0023550 

0.44 -0.244071 -0.2464 0.0023290 

0.45 -0.245198 -0.2475 0.0023020 

0.47 -0.246849 -0.2491 0.0022510 

0.49 -0.247698 -0.2499 0.0022020 

… … … … 

9.51 80.9302 80.9301 0.0001000 

9.53 81.291 81.2909 0.0001000 

9.55 81.6526 81.6525 0.0001000 

9.57 82.015 82.0149 0.0001000 

9.59 82.3782 82.3781 0.0001000 

9.61 82.7422 82.7421 0.0001000 

9.63 83.107 83.1069 0.0001000 

9.65 83.4726 83.4725 0.0001000 

9.67 83.839 83.8389 0.0001000 

9.69 84.2062 84.2061 0.0001000 

9.71 84.5742 84.5741 0.0001000 

9.73 84.943 84.9429 0.0001000 
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9.75 85.3126 85.3125 0.0001000 

9.77 85.683 85.6829 0.0001000 

9.79 86.0542 86.0541 0.0001000 

9.81 86.4262 86.4261 0.0001000 

9.83 86.799 86.7989 0.0001000 

9.85 87.1726 87.1725 0.0001000 

9.87 87.547 87.5469 0.0001000 

9.89 87.9222 87.9221 0.0001000 

9.91 88.2982 88.2981 0.0001000 

9.93 88.675 88.6749 0.0001000 

9.95 89.0526 89.0525 0.0001000 

9.97 89.431 89.4309 0.0001000 

9.99 89.8102 89.8101 0.0001000 

10 90.0001 90 0.0001000 

 

In this numerical simulation, we take the integration step-size h = 0.01, and the integration time-span is  

t ∈ [0, 10]. It is seen that all the curves are characterized with a typical exponential-like increase as t → ∞. The 

numerical methods do not gradually diverge from the exact solution as the time rises, and in this case the 

absolute error become constant during the time. 

 

4. Conclusions 

 

Considerable attention is paid to differential equations of fractional order because they appear to be more 

effective for modeling and analyzing dynamical processes in basic and engineering and sciences. Numerical 

solutions of the equations are often the only approach to study the dynamical behavior of these at particular 

parameter values, since in general the exact solutions of differential equations of fractional-order cannot be 

sought in practice. In our current work, we aimed to present the general form of (FABM) and its application 

to numerically approximate two different linear differential equations of fractional order in which fractional 

derivatives are taken in the sense of Caputo. To characterize the successfulness of the applied numerical 

method, we use the absolute difference parameter between the exact solution of each equation at a given time 

point and the approximate solution at the same instance. From the resulting diagrams and tabular values, we 

conclude that, in the Example 3.1, the method gradually diverge from the exact solution as the time rises, but 

in the Example 3.2. it approaches the correct solution, until the error becomes constant. During the work, it 

became necessary to use such symbolic software packages as Mathematica 12.1 in completing the required 

steps of the above procedures. 
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