
 

299 

 

 

 

UDC: 003.2:[004.51/52:004.934.5 

Professional paper 
 

NATURAL LANGUAGE PROCESSING AND TEXT-TO-SPEECH TECHNOLOGY 
 

Valbon ADEMI1, Lindita ADEMI2 

 

Faculty of Natural Mathematical Sciences 

Faculty of Philology 

 

Abstract 

 

Text-to-speech (TTS) technology is the process by which the computer is made to speak. It uses natural language processing 

concepts. Despite the advancement of technology that allows information to be stored electronically, textual information remains 

the most common way of exchanging information. Using text documents is problematic for visually impaired people in many 

scenarios, such as reading text on the move and accessing text under less-than-ideal conditions. The goal is to allow blind users 

to touch the printed text and receive the real-time transmission of the words. The development of such systems requires the use 

of such systems, requires the use of two technologies that are central to these systems, namely optical character recognition (OCR) 

to extract text information (Text Information Extraction) and text-to-voice (TTS) to convert this text in question. Text information 

extraction is the first and most important function of any assistive reading system and is an integral part of OCR because this 

process determines the intelligibility of the extracted word. Recent developments in computer vision, digital cameras, and 

computers make it possible to develop cameras and products that combine computer vision technology with other existing useful 

products such as optical character recognition systems used to recognize words. She can recognize characters, words, and 

sentences without any mistakes. OCR has a high recognition rate which is the electronic conversion of photographed images of 

typed or typed text into computer-readable text. Developments in computer technology make it possible to help these individuals 

by developing camera-based products. People with poor vision need portable assistance to read this printed text. The need to 

develop a voice-assisted text-to-speech system using the optical character recognition method with different sets of input and 

speech output is simulated. 
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Introduction 

 

The final stage in the text-to-speech system is the synthesizer responsible for producing the synthesized 

speech output. Several different synthesis techniques are presented, and in this chapter, we will look at 

concatenative synthesis, norm-based synthesis, and some other synthesis techniques such as MFM (Hidden 

Markov Model) based synthesis. In concatenative synthesis, small units of real recorded speech are fused 

together to form a final result. The best concatenation-based synthesizers are capable of rendering relatively 

natural synthetic speech. However, the disadvantage of this synthesis technique is that most of the speech 

contextual information is embedded in the data and the database size increases when different phonetic 

contexts have to be considered and stored in the database in such a way so that a natural sound of speech can 

be ensured. Norm-based norms or form synthesizers are mainly favored by phoneticians and phonologists 

because they constitute a cognitive and generative approach to the mechanism of phonation. Shape 

synthesizers have much less memory and requirements than contact systems, making them suitable for low-

memory devices. The disadvantage of norm-based synthesis is that the sound is usually quite mechanical since 

the norms for controlling the synthesis are very difficult to develop. In MFM (Hidden Markov Model) based 
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synthesis the speech spectrum and excitation parameters are modeled in context dependent MFM and during 

MFM speech synthesis they are instantiated according to the input text. MFM-based speech synthesizers are 

capable of producing natural speech, and their memory requirements are also relatively small. 

 

Concatenative Synthesis 

 

Linking previously recorded natural pronunciation is probably the easiest way to produce clear and natural 

synthetic speech. However, the disadvantage is that the systems are usually limited to one voice and often 

require more memory than other methods. One of the most important aspects of concatenative synthesis is 

finding the correct length of the sound unit. The selection is usually a trade-off between longer and shorter 

units. Longer units achieve high naturalness, fewer concatenative points, and good coordination control, but 

increase the number of required units and memory space. Shorter units require less memory, but sample 

collection and labeling procedures become more difficult and complex. In current systems, units such as words, 

syllables, and sometimes triphones are commonly used. This section presents two popular concatenative 

synthesis strategies, namely: unit choice synthesis and bifunctional synthesis. Unit selection synthesis uses a 

large audio database with typically fixed unit sizes, for example, demilogs. The basic principle is to collect 

speech units from different phonetic and prosodic contexts and find the best pairing order of text input units. 

Another concrete synthesis technique we present here is based on diaphragm binding and uses a minimal sound 

database containing all diphthongs that occur in a given language. 

 

Unit selection synthesis 

 

The basic idea of the unit selection technique is that new natural utterances can be synthesized by selecting 

appropriate subwords from a natural word count database. 

There are many prerequisites that must be met before the unit selection system can work. In unit selection, the 

system must be able to decide which units to select for synthesis in order to maximize the quality of the speech 

output in terms of clarity, naturalness, and other quality criteria. Therefore, systems try to find an optimal 

sequence of units that will minimize the cost of joining. Usually, the cost is divided into a target cost that 

indicates how close the unit is from the database to the desired one, and a continuity cost that indicates how 

well the two units are put together. The target cost is calculated for the duration and uses only the text features 

that can be calculated. Various typical characteristics have been proposed in the literature for the encoding of 

phonetic context, metrical structure and prosodic context of units. The continuum cost exploits all the 

properties of the candidate units, and is generally calculated as the Euclidean or Mahalonobian distance 

between the spectral features that represent the boundaries of the corresponding units. Continuity cost 

determination is usually computationally expensive, so it is advisable to calculate these costs offline and keep 

them in a lookup table. However, it is practically impossible to calculate and store the costs for all combinations 

of units over a large number of units, but since most combinations are very rare, it is sufficient to keep costs 

down continuously, for a small total database memory without sacrificing synthesis quality. The entire unit 

selection process is designed to optimally minimize both types of costs. This can be expressed by the following 

notation of the target cost Сt. 
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which is the weighted sum of the differences 

of the corresponding features. In this equation 

C is defined as the target cost, "t" is the third 

target unit, and it indicates the "i" unit in the 

unit’s database. Similarly, the weighting 

factor used to calculate the target cost is the 

number of comparable characteristics. Further, we can define the continuity cost C as a weighted sum of the 

changes in characteristics between the merged units. This can be presented as: 

where Cc is defined as a continuity cost, ui-1 

is the unit (і - 1) and Ui; points to unit "i" in 

the units database. Similarly, Wck is the 

weighting factor used for the constant cost of 

CCk, a "q" is the number of different features 

being compared. The weighted sum of these two costs must be minimized to find the order of the best-paired 

units from the unit database. Each Ui unit; in the database is represented by a grid shape transition network, 

and the placement costs are given by measuring the unit distortion, i.e., the target cost, and the shape transitions 

are given by measuring the continuity distortion. The unit selection process resembles the Hidden Markov 

Model MFM (Hidden Markov Model) based on automatic speech recognition, but instead of using 

probabilities as in Automated Speech Recognition (ASR-NAF), the unit selection applies cost functions. The 

unit selection algorithm selects from the database the optimal sequence of units by finding a path through the 

shape transition network that minimizes them. For example, if the word to be synthesized is found in the 

database, the algorithm can select the entire word (if it minimizes the total cost) instead of selecting individual 

units. By choosing longer sequences, the system can reduce the number of segmental coupling points and does 

not have to worry about how best to combine, for example, different diphthongs or triphthongs. 

 

Database of phonemes 

 

Unit selection systems usually select from a limited set of units in the sound database and try to find the best 

path through the given set of units. When there are no examples of units that would be relatively similar to the 

target units, the situation can be observed either as a lack of database coverage or the desired sentence to be 

synthesized is not in the scope of the TVG system. Therefore, to achieve high-quality synthesis, the sound 

database must have good coverage. In the simplest sense, this means recording more data from the speaker, 

since with more data the database is more likely to contain an entity that is similar to the target and will have 

more continuity. good. On the other hand, the problem with increasing the size of the database is that there 

will always be gaps i.e. situations where there are no units that are similar or close to the target. This is due to 

the phenomenon of relatively frequent occurrence of rare events in language. In practice, this means that 

common occurrences in the language are very frequent, but there are so many rare occurrences that they are 

also flat. Also, for example, covering all contexts in even a few phrases is impractical as the size of the database 

would increase, which would be too much for the mass storage systems currently available. So instead of trying 

to collect a huge database, we try to select the "real data". By "real data" we mean that the items in the database 
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will cover the identified acoustic and phonetic space of the language relatively well. There are many 

suggestions for database recording and pronunciation recording. For example, one solution is to first model 

the acoustic space of the speaker, and then find units that are acoustically distinct and frequent enough to merit 

inclusion in the database. In this method, a cluster tree is first made from a general sound database with good 

phonetic coverage. Once the tree is created, the number of occurrences of each cluster is calculated using the 

domain's typical pronunciations, and finally, the top scores and coverage pronunciations are selected. This 

results in a manageable set of results and thus the database provides better synthesis quality (relative to 

database size) than poorly designed databases. Most unit selection systems use a fixed unit size, but longer 

boundary segments can be selected thanks to the selection attribute. The size of the sound database is often 

reduced by using different methods of encoding the stored sound units. Another possibility is to reduce the 

number of stored units, and different selection methods will be used to find a balance between the size of the 

database and the quality of the synthesized speech. 

Synthesis of Diaphone 

 

Compared to the unit selection technique, diaphonic synthesis uses a minimal sound database containing all 

diaphones occurring in a given language. In diaphonic synthesis, only one copy of each diaphone is stored in 

the speech database. For sentence duration, the target sentence projection is set to these minimal units by means 

of digital signal processing techniques, such as predictive linear coding, Pitch Synchronous Overlap Add - 

PSOLA, or MBROLA. Crosstalk synthesis usually suffers from pitch distortion at the connection points, so 

the resulting speech quality is generally not as good as that of unit choices, but it is therefore more natural-

sounding than formant synthesizers. 

 

Formant synthesis 

 

There are two basic filter structures in the formant synthesizer, parallel and cascaded, but a combination of the 

two is usually used for better performance. In theory, formant synthesis also provides an infinite number of 

sounds (or sound units), making it flexible. Usually, at least three formants are needed to produce clear speech. 

Each formant is modeled with a bipolar resonator that allows you to specify both the formant's frequency and 

its width. Norm-based formant synthesis is based on a set of language/speech-specific norms used to define 

all the parameters needed to synthesize a desired translation. Some typical parameters used in current formant 

synthesis systems include: fundamental frequency, open pitch excitation coefficient, pitch, formant frequencies 

and their amplitudes, additional low frequency and high frequency resonator. The cascading formant 

synthesizer is shown in Figure 3.5 and consists of band resonators connected in series. In the cascade structure 

there is only one amplitude control (A), and the relative intensities of the formants are determined by their 

frequencies (F1, F2, F3) and range (BW 1, BW2, 

BW3). The output of each resonator formant is then 

used as the input to the next resonator. The cascading 

structure seems best for non-nasal sounds. However, 

generating friction and vibration sources is difficult 

with cascading structures. 
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The excitation signal is applied to all formants simultaneously and the results are summed together. Adjacent 

outputs of the shape resonators must be summed in opposite phases to avoid zeros or antiresonances in the 

frequency response. The parallel structure allows control of the range (BW 1, BW2, BW3) and gain (A1, A2, 

A3) for each shape (F1, F2, F3) separately, and has been found to provide better quality for the nose, fraction 

and stopping constants. 

 

 

 

 

 

 

 

 
Figure 3.6 Synthesizer parallel format 

 

When applying a formant synthesizer to a Text-to-Speech system, cascading and parallel patterns are combined 

to provide better quality. 

 

Articulatory Synthesis 

 

The basic idea behind articulatory synthesis is to produce synthetic speech directly by modeling the human 

articulatory system. This means that a mathematical model is defined for each organ of the human articulating 

system. So, there are different models for the lungs, vocal cords, vocal tract, tongue, lips, etc., and with their 

help to model human speech production as closely as possible. Due to the precise modeling of the human 

articulatory system, articulatory synthesis should theoretically be a good method for producing very natural-

sounding speech. However, the problem with articulatory synthesis lies in the complexity of implementation, 

for example, it is difficult to collect data on articulatory development, and computational efficiency 

requirements. Therefore, due to such requirements, articulation synthesis is not widely used in real systems. 

 

Based methods of linear predicates 

 

Similar to formant synthesis, basic linear predictive coding (LPC) is based on a filtered speech model at the 

source, and the filter coefficients are automatically calculated from the natural speech frame. The basis of the 

linear prediction is that the instantaneous speech sample y(n) can be computed from a finite number of previous 

samples y(n-1) to y(n-p) with a linear combination of a small error e (n). This results in the spoken sample y(n) 

being represented as: 
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where "p" is the linear predictor order, and a(k) are the linear 

predictor coefficients obtained by minimizing the sum of the 

squared errors in the frame. Two methods, the covariance 

method and the autocorrelation method, are most commonly 

used to calculate these coefficients, but only with 

autocorrelation is the stability of the filter guaranteed. 

In the synthesis stage, the excitation used is approximated by a series of pulses during speech sounds and by 

random noise during non-speech sounds. The excitation 

signal is amplified and filtered with a digital filter for 

which the coefficients a(k) is and they are usually updated 

every 5-10 ms. The order of the filter is usually between 

10 and 12 at the sampling rate of 8 kHz, but for higher 

quality, at the sampling rate of 22 kHz, the order is usually 

between 20 and 24. The main disadvantage of the standard 

LP method is that it presents a complete pattern, meaning 

that segments containing antformants (e.g. nasal vowels 

and nasalized vowels) are poorly patterned. The quality is 

relatively poor for short skirts, which have a shorter period 

than the frame size used for analysis. However, modifications and extensions to the basic LP model have been 

introduced to improve synthesis quality. An example is the Warped Linear Prediction (WLP) model which 

takes advantage of the characteristics of human hearing by reducing the much-needed filter line of 20-24 for 

22 kHz synthesis to 10-14. The basic idea is that the holding units in the filter are replaced by "a11-pass" 

sections. Depending on the warping feature used, WLP provides better low-frequency resolution and worse 

high-frequency resolution, which is however similar to the characteristics of human hearing. Several other 

variations of linear prediction have been developed to increase the quality compared to the basic model. With 

these methods, the excitation signal used is different from that in the standard LP method. Some examples are: 

Multi-pulse Linear Prediction (MLPC), where the excitation is built up from several pulses, Residual Excited 

Linear Prediction (RELP), where the error or repetition signal is used as the excitation signal and the speech 

signal can be accurately reconstructed, and Code Excited Linear Prediction (CELP), in which a limited number 

of excitations are stored in a limited book. 

 

Synthesis based on Hidden Markov Model (MFM) 

 

Although many Text-to-Speech systems can synthesize speech with acceptable quality, they are not capable 

of synthesizing speech with different voice characteristics such as individualities and speaker emotions. To 

obtain different sound characteristics in Text-to-Speech systems based on the selection and association of 

acoustic units, a large amount of sound data is required. However, it is relatively difficult to collect and segment 

large amounts of speech data for different languages. Moreover, it is not possible to store large databases on 

devices with low memory. Due to these aspects, to design a voice synthesis system that can generate various 

voice characteristics without large voice data, it is proposed to use Hidden Markov Model (MFM), Hidden 
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Markov Model-HMM. In the MFM-based speech synthesis system shown in Figure 3.7 the frequency spectrum 

(vocal tract), fundamental frequency (vocal source, i.e. excitation), and speech duration are simultaneously 

modeled with MFM. At synthesis time, MFM itself generates waveforms based on maximally similar criteria. 

The spectrum part of the MFM output vector is usually based on the "mel-cepstral" coefficients including zero 

coefficients and their first and second derivatives. Similarly, the temporal structure of speech, in other words, 

the MFM shape, is modeled using multivariate Gaussian distributions. During speech synthesis, the filter is 

controlled by an output vector MFM, i.e. mel-cepstral coefficients. One solution is to apply a mel-cepstral 

analysis technique, which allows speech to be resynthesized directly from the mel-cepstral coefficients using 

the Mel Log Spectrum Approximation (MLSA) filter. 

MFM is also used to model the fundamental frequency F0, and the observation sequence for this is composed 

of one-dimensional values and a discrete symbol indicating whether the phoneme is spoken or not spoken. 

Therefore, conventional discrete or continuous MFM cannot be used to model F0, and to model such 

observation sequences, MSM-based Probabilistic Multi-Spatial Distribution (MSD-NMM) is proposed. Many 

contextual factors the effect of speech spectrum, fundamental frequency pattern, sound duration, and context-

dependent MFM are used to cover all these effects. However, as the number of contextual factors increases, 

the number of possible combinations also increases exponentially, and therefore it is not possible to calculate 

exactly with a limited amount of training data. To overcome this problem, context-based decision tree 

clustering is applied to MFM-based automated voice recognition and speech synthesis. Furthermore, these 

techniques apply to MSD-HMM.  

 

Conclusion  

 

During speech synthesis, an MFM corresponding to the input text is constructed by concatenating the context-

dependent MFM. The shape length of the constructed MFM is determined by maximizing the likelihood of the 

shape duration output. Similarly, the sequence of "mel-cepstral" coefficients and logF0 values including the 

discrete parameter speech / no response is determined by maximizing the algorithm for generating the speech 

parameter. Finally, the speech wave is generated directly from the "mel-cepstral" coefficients and F0 values 

using an MLSA filter. In the synthesis technique based on MFM, the speech characteristics can be changed by 

modifying the MFM parameters. It has been shown that the characteristics of synthesized speech can be 

changed by applying a speaker adaptation technique, a speaker interpretation technique, or an (eigenvoice) 

technique. In addition, in MFM synthesis, adaptive techniques can also be used for language adaptation. MFM 

can be trained by applying several monolingual corpora from different languages resulting in a multilingual 

synthesizer. During synthesis, models can be fitted to a particular speaker by applying, for example, MLLR, 

the Maximum Likelihood Linear Regression fitting model. 
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