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Abstract 

 

Our final result is interconnectedness between the generalized inverses of partitioned matrices and limit representations of 

generalized inverses. These results are established using relationships between generalized Schur complements ( / )gA R  and 

( / )gA T  of an appropriate partitioned matrix 
R ST

A
TU T

 
  
 

. Also, some essential relations are investigated between the 

blocks involved in generalized inverses of A and generalized inverses of the Schur complements ( / )gA R  and ( / )gA T . Some 

rank equalities on generalized inverses are obtained. 

AMS Subj. Class.: 15A09, 15A10 
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1. Introduction 

 

This paper aims to establish relationship between the generalized Schur complements ( / )gA R  and ( / )gA T  of 

a partitioned matrix 
R ST

A
TU T

 
  
 

 satisfying ( ) ( )TU RR R  and ( ) ( )ST RC C . Also, we derive a few 

relations between the blocks involved in generalized inverses of A  and generalized inverses of the Schur 

complements ( / )gA R  and ( / )gA T . Moreover, we obtain a few additional results related to  *rank Y Z I

and correlations between the limit  * *

0
lim

l

Y Z Y






I

 
and g-inverses of the partitioned matrix 

*

q

p

Y

Z

 
 
  

I

I
. 

       To ensure completeness in our presentation, we list some basic labels and notions. The standard notation 

m nC stands for m n  matrices over complex numbers C  and  rank( )m n m n

r X X r   C C . An 

appropriate zero matrix is denoted by O , while pI  denotes the p p  identity matrix. For any matrix A , the 

row and column space of A  are denoted by ( )AR  and ( )AC , respectively. 

       For a given 
m nA C the following equations in X are important in classifying generalized inverses: 
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   (1) ,        (2) ,          (3) ,          (4)AXA A XAX X AX AX XA XA
 

    . 

Important equations in the case m n  are 
1(5) ,         (1 ) k k kAX XA A X A  , 

where k denotes the index of A , defined by  1ind( ) min rank( ) rank( )k kA k A A  .  

The set of generalized inverses obeying the equations represented in S  is denoted by  A S . A matrix from 

 A S  is called an S -inverse of A  and denoted by ( )A S . A solution to the equation (1) is said to be a g-

inverse, or {1}-inverse (or inner inverse) of A . If X satisfies (1) and (2), it is known as a reflexive g-inverse of 

A , whereas the Moore-Penrose inverse †X A  fulfills all the equations (1)–(4). A matrix DA  is said to be 

the Drazin inverse of A  if (1 )k , (2), (5) are satisfied. The group inverse #A represents the unique element 

 1,  2,  5A  and exists under the restriction ind( ) 1A  . A matrix  X A S  which fulfills ( ) ( )X ER R  and 

( ) ( )X N FN  will be termed as ( )

( ), ( )

S

E FAR N . An arbitrary matrix contained in A{2} is known as an outer 

generalized inverse of A . 

       The Schur complement of E  in a block matrix 
E F

A
G H

 
  
 

  is defined as 

  1/A E H GE F  . 

Various generalizations of Schur complement are introduced utilizing miscellaneous generalized inverses of 

E . Consequently, heterogeneous representations and characterizations of generalized inverses of block 

matrices are introduced in terms of generalized Schur complements. The Schur complement and its extensions 

have been exploited extensively in the matrix theory, statistics, calculation of large-scale generalized inverses, 

and numerical analysis [1, 4, 5, 7, 8, 9, 10, 13, 16, 24, 28, 30]. Generalized Schur complement based on the 

Drazin inverse  / D

D
A E H GE F   and initiated representations of 

DA  were investigated in [18, 25]. 

Generalized Shur complement based on the group inverse   #

#
/A E H GE F  and initiated representations 

of #A were investigated in [23]. Generalization of the Shur complement based on the Moore-Penrose inverse 

  †

†
/A E H GE F   and initiated representations of 

†A were investigated in [12, 15]. Carlson in [11] 

introduced the Schur complement in terms of g-inverses. The generalized Schur complement of E  and H  in 

E F
A

G H

 
  
 

, respectively, in terms of g-inverses are defined by the expressions [10, 11, 30] 

   (1) (1)/ , /
g g

A E H GE F A H E FH G    . 

The generalized Schur complement based on the generalized inverse (2)

( ), ( )E FAR N  was proposed and investigated 

in [38]:  

   (2) (2)

( ), ( ) ( ), ( )(2) (2)
/ , /E F E FA E H GE F A H E FH G   R N R N . 
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      The most general structure of our research is organized according to the following scheme. Preliminaries, 

motivation, and description of the main results are described in Section 2. Section 3 derives the main results 

of the research. Concluding remarks are given in Section 4. 

 

2. Preliminaries and description of main results 

 

The results stated in this section are available in literature, and are restated here for the sake of completeness. 

Theorem 2.1. [19] Let E  be an r t  matrix, F  is an r u  matrix, V  be an s t  matrix, and W  be an s u  

matrix. Assume ( ) ( )V ER R  and ( ) ( )F EC C . Then, for any g-inverse 
11 12

21 22

G G
G

G G

 
  
   

of the partitioned 

matrix 
W V

A
F E

 
  
 

 , the u s  submatrix 
11G  is a g-inverse of   (1) /

g
W VE F A E  . Similarly, for any g-

inverse
11 12

21 22

H H
H

H H

 
  
 

 of the partitioned matrix 
E F

B
V W

 
  
 

 the u s  submatrix 22H  is a g-inverse of  

 (1) /
g

W VE F B E  . Further,

  

   

       

(1)rank rank rank rank

rank rank / rank rank / .
g g

W V F E
E W VE F

F E W V

E B E E A E

      
         

      

     

Corollary 2.1. [19] For any g-inverse 
11 12

21 22

G G
G

G G

 
  
 

 of the matrix 
R ST

A
TU T

 
  
 

, the block 
11G is a g-

inverse of   /
g

R STU A T  . Further, 

     rank rank rankR STU A T   . 

Theorem 2.2. [19] The matrix 

 
(1)

(1) (1) (1) (1)R R ST T TUR ST TUR   

is a g-inverse of  R STU
 
if ( ) ( )TU RR R  and ( ) ( )ST RC C . 

Lemma 2.1. [2] Let A  represents an r s  matrix. For arbitrary r t  matrix B , ( ) ( )B AC C (1)B AA BÛ . 

Also, for any u s  matrix C , ( ) ( )C AR R (1)C CA AÛ . 

Theorem 2.3. [19] Let (1)Q T TUR ST 
 
. If ( ) ( )TU RR R  and ( ) ( )ST RC C  then 

       rank rank rank rankR STU R T Q      . 

 

The following main results of this research are emphasized. 



 

325 

 

 

 

 We investigate a relation between the generalized Schur complement  /
g

A R  and the generalized 

Schur complement  /
g

A T  of a partitioned matrix 

R ST
A

TU T

 
  
 

 

whose blocks satisfy the conditions ( ) ( )TU RR R  and ( ) ( )ST RC C . Also, we introduce a few 

identities between the generalized Schur complements  /
g

A R  and  /
g

A T  and blocks of an arbitrary 

{1}-inverse of A . 

 In a partial case, for a partitioned matrix of the form  
*

q

p

Y
B

Z

 
  
  

I

I
 

               we get several identities between blocks contained in {1}-inverses of B  and the limit expression 

              
(1)

* *

0
lim , 0qL Y Z Y


 


  I . Such a principle leads to a generalization of the known result  [33, 

              Lemma 2.1]. 

 

 These results can be applied in the computation of the limit L  in the case of its existence. Then various 

classes of generalized inverses of a given p q  matrix B , which can be expressed by the limit L , are 

expressed in terms of blocks contained in {1}-inverses of B . We discuss all these classes in details. 

As far as we know, our results are the first correlations between the generalized inverses of partitioned 

matrices and the limit representation of generalized inverses. 

 

 Moreover, we obtain a few additional results about the rank of the matrix * , 0q Y Z  I . 

 

3. Results 

 

In the following theorem, we introduce several identities between the generalized Schur complements of a 

particular partitioned matrix and blocks contained in its {1}-inverse. 

Theorem 3.1. Let R , S , T  and U  be matrices of the order ,  ,  n q n m m p    and p q , respectively. 

Consider the partitioned matrix 

R ST
A

TU T

 
  
   

which satisfies the conditions 

                                                  ( ) ( )TU RR R  and ( ) ( )ST RC C                                             (3.1) 

Then the generalized Schur complements of T  and R  in A  satisfy 

                                                    
(1) (1)(1) (1) (1)/ /
g g

A T R R ST A R TUR                                            (3.2) 
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for some {1}-inverses of the generalized Schur complements  /
g

A T  and  /
g

A R  and {1}-inverse (1)R of R . 

     Also, if 

11 12

21 22

G G
G

G G

 
  
   

is a g-inverse of A , the following additional results are obtained:  

                                                   

 

 

(1)(1) (1) (1)

11

(1) (1) (1) (1)

22

(1) (1) (1)

11 22

/

/

g
G R R ST A R TUR

A T R R STG TUR

G R R STG TUR

 

 

 

                                        (3.3) 

Proof. The generalized Schur complement of T  in A  is equal to 

                                               (1)/A T R ST T TU R STU                                            (3.4) 

Using (3.1) and the result from Theorem 2.2, it is concluded 

                                   
(1)

(1) (1) (1) (1) {1}R R ST T TUR ST TUR R STU                                   (3.5) 

Also, using 

                                         (1) (1)/
g

A R T TUR ST T TUR ST                                       (3.6) 

in conjunction with (3.4),(3.5),(3.6), it is concluded 

     

 

(1)(1) (1) (1) (1) (1) (1)

(1)(1) (1) (1)

/

/
g

A T R STU R R ST T TUR ST TUR

R R ST A R TUR

    

 
 

In this way, the equality (3.2) is verified. 

     According to Corollary 1.1, the block 
11G is a generalized inverse of the generalized Schur complement 

 /
g

A T : 

                                                                         
(1)

11 /
g

G A T                                                                (3.7) 

     On the other hand, using (3.1) and applying the second part of Theorem 2.1, we obtain 

                                                      
(1)

22 /
g

G A R                                                                (3.8) 

Equalities in (3.3) follow from (3.2),(3.7) and (3.8).   □ 

 

     Particularly, when the partitioned matrix of the form 

*

q

p

Y
B

Z

 
  
  

I

I
 is considered, the limiting 

expressions  
(1)

* *

0
lim q Y Z Y





I
 
can be expressed in terms of limit expressions involving blocks of {1}-

inverses of B . 
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Theorem 3.2. Let Y , Z  be arbitrary matrices of the order p q . Then the following identities are valid: 

                                        

 

 

(1)
* * *

11
0 0

(1)
* * *

22
0 0

lim lim ;

1
lim lim ;

q

p

Y Z Y C Y

Y ZY Y C

 

 






 

 

 

 

I

I

                                     (3.9) 

                                          

 

 

(1)
*

11
0 0

(1)
*

22
0 0

lim lim ;

1
lim lim ,

q

p

Z Y Z ZC

ZY Z C Z

 

 






 

 

 

 

I

I

                                    (3.10) 

where 
11 12

21 22

C C
C

C C

 
  
 

 is an arbitrary g-inverse of the matrix 

*

q

p

Y
B

Z

 
  
  

I

I
 . 

     If the matrix B  is invertible, it follows 

                      

 

 

(1)
* * *

11
0 0

(1)
* * *

22
0 0

22
0

lim lim

1
lim lim

lim ;

q

p

Y Z Y C Y

Y ZY Y C

C

 

 








 

 



 

  



I

I                   (3.11) 

                    

 

 

(1)
*

11
0 0

(1)
*

22
0 0

21
0

lim lim

1
lim lim

lim .

q

p

Z Y Z ZC

ZY Z C Z

C

 

 








 

 



 

  

 

I

I                    (3.12) 

Proof.  Starting from 

   
(1) (1)

* * ,p p p pY Y Z Z I I I I , 

an application of Lemma 2.1 enables the following inclusions: 
*( ) ( )pY  IR R  and ( ) ( )pZ  IC C .  

According to Theorem 2.1, 11C  is a g-inverse of the matrix 

    
(1)

* */ p p p qB Y Z Y Z     I I I I . 

Hence, we obtain 

                                      
(1)

* * *

11
0 0

lim lim qC Y Y Z Y
 


 

 I .                                 (3.13) 

     On the other hand, using 

      
(1) (1)

* *,q q q qZ Z Y Y    I I I I , 

it is obtained 
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( ) ( )qZ  IR R  and 
*( ) ( )qY  IC C .  

In view of Theorem 2.1, 
22C  is a g-inverse of the matrix 

     (1) * *1
/( ) ( )q p q pg

B Z Y ZY  


    I I I I
 

This implies 

                                         
 

(1)
* * *

22
0 0

1
lim lim pY C Y ZY
 


 

 I .                                 (3.14) 

     In a similar way one can verify the following: 

                                          
 

(1)
*

11
0 0

lim lim ;qZC Z Y Z
 


 

 I                                      (3.15) 

                                          
 

(1)
*

22
0 0

1
lim lim pC Z ZY Z
 


 

 I .                                 (3.16) 

     If the matrix B  is invertible, we have BC CB  I . Using the equation BC I , it is not difficult to verify 

                                              

* *

12 22 11

1
C Y C C Y


  .                                              (3.17) 

The part (3.11) of the proof follows from (3.13), (3.14) and (3.17). 

     Also, using CB I , one can verify the following 

                                               
21 22 11

1
C C Z ZC


    .                                           (3.18) 

The part (3.12) of the proof is implied by (3.15), (3.16) and (3.18).     □ 

 

Remark 3.1. Results (3.11) and (3.12) of Theorem 3.2 are a generalization of the known result introduced in 

[33, Lemma 2.1]. 

     We now assume the existence of the general limit representation  
1

* *

0
lim qL Y Z Y






 I  which is 

investigated in [33]. As a consequence of the previous results, we obtain representations of various classes of 

generalized inverses in terms of the limits of expressions involving blocks of {1}-inverses of the matrix B . 

 

Theorem 3.3. Consider m n

rA C , two p q  matrices Y  and Z  and the block matrix 

*

q

p

Y
B

Z

 
  
  

I

I
. Let 

11 12

21 22

C C
C

C C

 
  
 

 be an arbitrary {1}-inverse of B . Then the subsequent statements are true: 
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* * †

22 11
0 0

* * *

11 22
0 0

* * 1 *

11
0

*

22 11
0 0

1
(i) lim lim .

1
(ii) , , ind( ) lim lim .

(iii) , , ind( ) lim .

1
(iv) , ind( ) , lim lim .

k D

k D k

k D k k

n

Y Z A Y C C Y A

Y A Z A k A A C Y Y C

Y Z A Y A k A A C Y

Y A k A Z AA A C C A

 

 



 







 

 





 

    

     

    

     I

 

Proof. (i) Since the matrix *A A  is positive semidefinite and 0  , the matrix *A A I  is positive definite. 

Using invertibility of the matrix *A A I , according to Theorem 3.2 we get 

   
1 1

* * * * * *

11 22
0 0 0 0

1
lim lim lim lim .C A A A A A AA A C
   

 


 

   
    I I  

Now, it is sufficient to use the limit representation of the Moore-Penrose inverse from [2, 3]. 

     (ii) Application of the known result from [26, 31] implies the existence of the limit expression 

 
1

* 1

0
lim , ind( )k k

nA A A k A








 I . 

Using the limit representation of the Drazin inverse from [26, 31] and Theorem 3.2, we get 

   

 

1 1
1

0 0

1
* *

11 22
0 0 0

lim lim

1
lim lim lim .

D k k k k

n n

k k

n

A A A A A A

C Y A AA Y C

 

  

 




 


 



  

   

   

I I

I

 

where * ,kY A Z A  . 

     (iii) Follows from the following result, introduced in [20]: 

 
( 1)

0
lim

kD k

nA A A



 


 I . 

     (iv) Follows from the following statement, introduced in [35, 36]: If  ind A k , then 

 
1

0
lim k k D

n A A AA






 I . 

The proof is complete.    □  

 

     In the following theorem we obtain a representation of generalized inverse (2)

,T SA  in terms of limiting 

expressions involving blocks contained in g-inverses of a partitioned matrix. 

 

Theorem 3.4. Let m n

rA C , let T  be a subspace of nC  of dimension s r , and S  be a subspace of mC  of 

dimension m s . Further, assume that n mG C  satisfies ( ) , ( )G T G S R N . If (2)

,T SA
 
 exists, it follows 

(2)

, 11 22
0 0

1
lim limT SA C G GC
   

  , 
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where 
11 12

21 22

C C
C

C C

 
  
 

 is any {1}-inverse of 

n

m

G
B

A

  
  
 

I

I
. 

     When B  is of full rank it follows additionally 
(2)

, 12 21
0 0

lim limT SA C C
  

   . 

Proof. In this case, identities in (3.9) and (3.10) can be written in the form 

                                                

 

 

(1)

11
0 0

(1)

22
0 0

lim lim

1
lim lim .

n

n

C G GA G

GC G AG

 

 






 

 

 

 

I

I

                                      (3.19) 

The following limit representation of the generalized inverse (2)

,T SA , from [35, 36, 37] 

 
1(2)

,
0

limT S nA GA G






 I , 

deduces invertibility of 
n GA I  in the case when (2)

,T SA
 
exists. The proof can be completed using (3.19) and 

   
1 1

0 0
lim limn nGA G G AG
 

 
 

 
  I I . 

     For a full rank matrix B  the proof follows from (3.11) and (3.12).      □ 

 

     In a similar way as in [33, Theorem 2.3], one can verify the following statements. 

 

Corollary 3.1. Let 
11 12

21 22

C C
C

C C

 
  
 

 be an arbitrary g-inverse of the partitioned matrix 

*

q

p

Y
B

Z

 
  
  

I

I
, where 

Y  and Z  are p q  matrices. Consider m n

rA C , two arbitrary matrices 1

n rW C
 
and

 2

r mW C  which 

satisfy  2 1rank W AW r  and two arbitrary matrices n sG C
 
and s mH C

 
satisfying  rank HAG s r  . 

Then the subsequent statements are equivalent: 

     

* * *

22 11 1 2
0 0

* *

22 11 2 1
0 0

* * *

22 11
0 0

* *

22 11
0 0

1
(i) {1,2} lim lim , , ;

1
(ii) {1,2} lim lim , ;

1
(iii) {2} lim lim , , ;

1
(iv) {2} lim lim , .

D A D Y C C Y Z A Y WW

D A D Y C C Y Y Z W AW

D A D Y C C Y Z A Y GH

X A X Y C C Y Y Z HAG

 

 

 

 









 

 

 

 

     

     

     

     
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Remark 3.2. A generalization of the Leverrier-Feddeev algorithm for the implementation of the limit 

representation  * *

0
lim

l

q Y Z Y






I

 
was introduced in [33]. In this way, a general form of various 

modifications of the Leverrier-Feddeev algorithm for calculating generalized inverses was obtained in [33]. 

Covered modifications were investigated in [14, 17, 21, 34]. Also, a method for computing generalized 

inverses, which is based on the system of differential equations, and arising from the corresponding limit 

representations, was introduced in [21] and [34]. 

      

In this paper we develop an additional method to calculate  * *

0
lim

l

q Y Z Y






I , based on the application of 

blocks contained in g-inverses of the partitioned matrix 

*

q

p

Y

Z

 
 
  

I

I
 . Because of (3.9), limit expressions 

* *

11 22
0 0

1
lim limC Y Y C
   


 

are applicable even in the case when the inverse  
1

*

q Y Z


I  cannot be calculated by a computer. 

 

Theorem 3.5. Let 
11 12

21 22

C C
C

C C

 
  
 

 be an arbitrary g-inverse of the partitioned matrix 

*

q

p

Y
B

Z

 
  
  

I

I
, where 

Y  and Z  are p q  matrices . If 0   is a given real number, we get the following identities: 

                                * *rank rank rankq pY Z B p q p ZY       I I                             (3.20) 

Proof.  The first equality in (3.20) follows from Corollary 2.1. Also, using 
*( ) ( ), ( ) ( )q qZ Y  I IR R C C , 

and applying the results of Theorem 2.3 to the matrix B , we get 

 

 

* *

*

1
rank rank

rank .

q p q

p

Y Z q p Z Y

q p ZY






  
      

  

   

I I I

I

 

which finalizes the proof.     □ 

 

 

4. Conclusion 

      

Relationship between the generalized Schur complements ( / )gA R  and ( / )gA T  of the partitioned matrix 

R ST
A

TU T

 
  
   

are considered under the restrictions ( ) ( )TU RR R  and ( ) ( )ST RC C . In addition, we 

propose several relations between the blocks involved in generalized inverses of A  and generalized inverses 
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of the Schur complements ( / )gA R  and ( / )gA T . Moreover, we obtain a few additional results related to 

 *rank Y Z I  and correlations between  * *

0
lim

l

Y Z Y






I  and g-inverses of 

*

q

p

Y

Z

 
 
  

I

I
. Some rank 

equalities on generalized inverses are obtained. 

Actual results are derived using the generalized Schur complement based on {1}-inverses. Further research 

may refer to analogous results based on generalized Schur complement resulting from different generalized 

inversions, such as the Moore-Penrose inverse or outer generalized inverses. 
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