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Abstract 

 

Various types of complex networks, such as telecommunication networks, are modeled using graphs whose vertices are 

telecommunication stations and whose edges are cables. During the construction of such networks, there are various restrictions 

on the vertices or edges. The condition is usually set on the highest degree of the vertex of that graph (that network) and the 

diameter of the graph (in that network). When studying such graphs, two typical problems arise: (i)  degree/diameter problem: for 

given natural numbers   and L , it is necessary to find the largest possible number of vertices ,Ln  of a connected graph whose 

largest degree is equal to  , and whose diameter is less than or equal to L ;  (ii) degree/girth problem: with the given natural 

numbers 2d   and 3g  , the smallest possible number of vertices of a connected regular graph whose degree of regularity is 

equal to d  and girth is g  should be determined. The study of these two problems takes place in finding evidence for the non-

existence of graphs whose number of vertices is very close to the upper limit for the number ,Ln , called Moore's limit, numerous 

studies give results about the existence of graphs that improve the lower limit of this number. The main goal of this paper is to 

study the problem of the existence of Moore graphs, that is, those graphs which, under the given conditions, have the number of 

vertices equal to Moore's limit. In the introductory section of the paper, the fundamental concepts and basic properties of the 

Moore graph are precisely defined. Furthermore, all Moore graphs of diameter 2 are described, and special emphasis is placed on 

the very important Moore graph known as the Petersen graph. Numerous figures are also offered for a better insight into its 

structure. The last part of the paper is covered by the problem characterizations of Moore graphs of diameter 3.  

 

Keywords:  Moore graph, Vertex degree, Diameter of graph, Petersen graph. 

       

Definition of Moore graphs 

 

The term of Moore graphs will be introduced using a special tree called a BFS (Breadth First Search) tree1. 

Therefore, suppose that there is a connected graph with n  vertices whose largest degree is   and whose 

diameter is L . It is necessary to find the largest number of vertices that can have such a graph. The case 

1L    is trivial, i.e. the only graph of diameter 1 and highest degree 1 is the complete graph 2K
, so 2n  . 

Therefore, let's assume that 2   and 2L  . Let's construct a BFS tree with vertex-root v . 
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                                                                      v  

 
Figure 1: BFS tree when 3   and 3L   

From the vertex v  along a path of length 1, we can visit at most   vertices. From a vertex v  along a path of 

length 2 we can visit at most ( 1)    vertices, etc. Finally, from a vertex v  along a path of length L  we can 

visit at most 
1( 1)L     vertices. See Fig.1. We get: 
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            

        

  
  

 
  



                         (1) 

 

The number on the right side of inequality (1) is called Moore's limit and denoted by ,LM  . Edward F. Moore 

(see [7]) posed the problem of classification and characterization of graphs which, with the given largest degree 

and diameter, have the number of vertices equal to ,LM  . Such graphs have special properties and are called 

Moore graphs. They are necessarily  -regular. Moore graphs of degree   and diameter L  are said to be 

Moore graphs of type ( , )L . Initially, the Moore graphs of diameters 2 and 3 were studied (see [10], [12]). In 

the case of diameter 2, it was shown that the Moore graph exists only for 2,3,7   and possibly 57. For cases 

of 2,3  and 7 proved the uniqueness of the corresponding Moore graphs (see [6], [7]). For 3L   it is proved 

that there is a unique Moore graph and this is a 7-cycle or 
7C  (in this case 2  ). These assertions are proved 

using the eigenvalues and eigenvectors of the adjacency matrix of the graph (and its main submatrices), see 

[15], [16]. 

_____________________________________________ 
1 If the largest degree of the graph is given, then by constructing a BFS-tree we get the largest number of 

vertices of the graph, because each level is filled to the maximum, and only then do we move to the next level. 
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Basic properties of Moore graphs 

 

Notice that the trivial graph is a Moore graph of type ( , ) (0,0)L  . Unique Moore graphs of type ( ,1) are 

complete graphs 1K . 

 

 

3K                       4K                            5K                             6K                             7K  

Figure 2: Some complete graphs , ( 3,4,5,6,7)iK i   

 

For each LN , the cycle 2 1LC   is a unique Moore graph of type (2, )L .          

 

3C                                        
5C                                             

7C  

Figure 3: Some cycles , ( 3,5,7)iC i   

Let's take an arbitrary Moore type graph ( , )L  and select one of its vertices, which we will consider as a 

vertex-root. For 0,1,...,k L , we define level k  as the set of all vertices at a distance of k  from the root, and 

we define kn  as the number of vertices at level k . Thus, at the zero level there is a unique vertex-root, at the 

first level there are all vertices at a distance of one from the root, on the second level there are all vertices at a 

distance of two from the root, etc. 

For the number of vertices kn  at level k , it is clear that: 
0 1n   and 1( 1)k

kn       for all 1 k L  . Since 

the Moore graph is  -regular with the number of vertices ,LM  , edges can exist only between level k  and 

1k  , ( 0,1,..., 1k L  ) or between vertices located on level L . 

Furthermore, there follows a statement and proof of an important polynomial recursion related to Moore 

graphs. 

 

Proposition 1. [4] For , {0}L  N , we define the polynomials ( )jP x  recursively as follows: 

                                           

1 1

1

0

( ) ( ) ( 1) ( )

( ) 1

( ) 1

j j jP x xP x P x

P x x

P x

   

 



                                              (2) 
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If A is the adjacency matrix of a Moore graph of type ( , )L , then ( )LP A S , where S is a square matrix with 

all elements equal to 1. 

 

Proof. For fixed   and L , assume that there is a Moore graph of type ( , )L   and denote it by ( , )G V E . 

For 0 r L   and ,u v V , the following holds: 

 
,

1, if there is a path from  to  with a maximum length of 
( )

0, otherwise.
r u v

u v r
P A


 


 

 

That means the element in the matrix ( )rP A  located in the row corresponding to the vertex u  and in the 

column corresponding to the vertex v  is equal to 1 if exists is an ( , )u v -path and if ( , )d u v r  holds. 

Otherwise, the corresponding element of the matrix is equal to zero. 

The proof of this statement will be realized by the method of mathematical induction by number r . For 0r   

we have 0 ( )P A I  because a path of length 0 exists only between vertices that are identical, so the polynomial 

0P  equalized in matrix A  gives the unit matrix I . 

For 1r  , we observe all paths between vertices in the graph G  that are of length 0 or 1. It is clear that in that 

case 
1( )P A A I  . 

Assume that 2 r L  . According to the definition of the product of two matrices, we have: 

 

                                                ,, ,
( ) ( )r u w ru v w v

w V

AP A A P A


                                                 (3) 

 

Without loss of generality, we can assume that the vertex v  is a root. Let the vertex u  be at the level i . Let's 

consider the following cases: 

 

 Case a): When 0 i r   

Given that u  is at the level of i , it is known that there is a path from the root v  to vertex u , and since i r , 

according to the assumption of induction,  1 ,
( ) 1r u v

P A   is valid. 

Furthermore, is valid 
 , ,

( ) 1u w r w v
A P A 

 if and only if wu E . If u  and w  are adjacent, then w  is either at 

the level 1i   (this is only valid if 1i  ) or at the level 1i  . As ( , )d u v i r  , it holds that 
 

,
( ) 1r w v

P A 
 so 

 , ,
( ) 1u w r w v

A P A 
. 

Conversely, if 
 , ,

( ) 1u w r w v
A P A 

, then both factors are different from zero, i.e. equal to 1, so u  and w  are 

adjacent vertices.  
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There are exactly   such w V , so the sum in (3) is equal to  . Using the definition of the polynomial ( )jP x

, we conclude that: 

 1 ,
( ) ( 1) 1r u v

P A      
. 

                                                                                                                                           □ 

 Case b): When 1r i r    

Now the distance between vertices u  and v  is at least r , so 
 1 ,

( ) 0r u v
P A 

 must be valid. 

Similar to the first case, is valid 
 , ,

( ) 1u w r w v
A P A 

 if and only if wu E  and additionally it holds that w  is at 

the level of 1i  . If w  were at the 1i   level, then the distance between w  and v  would be greater than r , so 

we would have 
 

,
( ) 0r w v

P A 
. However, we have only one such w V , so the sum in (3) is equal to 1. 

Therefore,  

 1 ,
( ) 1r u v

P A 
. 

                                                                                                                                                    □ 

 Case c): When 1i r   

The vertex u  is more than 1r   away from the root v . Hence 
 1 ,

( ) 0r u v
P A 

 must hold. But then it is also 

 , ,
( ) 0u w r w v

A P A 
 for every w V , because if u  and w  are adjacent, then w  is at a level that is at least 1r 

. We get that it is 

                                                              

 1 ,
( ) 0r u v

P A 
. 

The proof by induction is complete. Since graph G  is of diameter L , between every two vertices there is a 

path of length less than or equal to L , so ( )LP A S  holds. 

                                                                                                                                                                 ▭ 

Moore graphs of diameter 2 

 

Let G  be a Moore graph of type ( ,2)  and let A  be the adjacency matrix of graph G . Then, from formula 

(1) it follows 
2

1 2

,2

1

1 ( 1) 1 ( 1) 1k

k

n M      



         
. 

 

For the adjacency matrix A  of the graph G , we will describe its spectrum. Let us denote by p  a vector whose 

components are all equal to 1. 
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Lemma 1. The adjacency matrix of a Moore graph G  has exactly 3 distinct eigenvalues. One is  , and the 

other two are 1  and 
2  given by the equations: 

 

                           
1

1 4 3

2




  
 ,                   

2

1 4 3

2




  
                                 (4) 

 

The eigenvalue   has a multiple of 1. 

 

Proof. [13] By Proposition 1, the adjacency matrix A  satisfies the equation: 

 

                                                   2 ( 1)A A I S                                                    (5) 

 

We notice that Sp np  and Ap p , so p  is an eigenvector of matrix S , but also of matrix A , and   is an 

eigenvalue of A . Since the G  is a  -regular graph, the eigenvalue   of A  has multiplicity 1. 

Assume that q  ( q p ) is an eigenvector of A  with a corresponding eigenvalue of  . Due to the 

orthogonality of the set of all eigenvectors of the symmetric matrix A , it follows that 0Tp q  , so we conclude 

that the sum of all components of the vector q  is equal to zero. It follows that 0Sq  . Multiplying (5) by 

0q   we get: 

2

2

2

2

( 1)

( ) ( 1) 0

( 1) 0

( 1) 0

( 1) 0

1 0

A q Aq q Sq

A Aq Aq q

Aq q q

q q q

q





  

  

  

  

   

   

   

   

     

    

 

 

The obtained quadratic equation has two different real solutions 1  and 
2  given by (4). 

                                                                                                                                                                   ▭ 

 

Further, we will consider the case when the numbers 1  and 
2   are irrational, and then the case when they 

are rational. 

 

Lemma 2. If 1  and 
2  

are irrational numbers, then 2  . 
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Proof. According to Lemma 1, the sum of multiples of the eigenvalues 1  and 
2  of the adjacency matrix A  

is 1n . Let a  be a multiple of the eigenvalue 1 , and b  be a multiple of the eigenvalue 
2 . It follows that 

21a b n     . We know that the trace ( )tr A  of the matrix A  is equal to the sum of its diagonal elements, 

so in our case ( ) 0tr A  . However, the trace of the matrix A  can also be obtained as the sum of its eigenvalues, 

so using Lemma 1 we get: 

 

   

1 2 0

1 4 3 1 4 3 0
2 2

( 2)

4 3

a b

a b

a b

  

  

 



  

        


 



 

 

The left side of the last equality is an integer since it is obtained as the difference of two natural numbers. The 

right side of the same equality is the quotient of an integer and an irrational number (as by assumption 1  and 

2  are irrational numbers, therefore 4 3   is not the square of any natural number). Thus, the last equality 

makes sense if and only if a b  holds, that is 

( 2) 0    . 

The case 0   is not possible because the diameter of graph G  is equal to 2. We conclude that 2   is valid. 

                                                                                                                                 ▭ 

The following theorem states and proves the main result of Moore graphs: 

 

Theorem 1. A Moore graph of type ( ,2)  exists only for 2,3,7   or 57. 

 

Proof. In Lemma 2, the existence of the Moore graph for 2   is confirmed. For other cases, it should be 

assumed that 1  and 
2  are rational numbers, that is, that 24 3 t    is valid, where t is some natural number. 

Let us denote by k  the multiplicity of the eigenvalue 1 . Then according to Lemma 1, the multiplicity of the 

eigenvalue 
2  is 1n k  . 

Since ( ) 0tr A  , the following holds: 

1 1
( 1 ) 0

2 2

t t
k n k

     
       

   
. 

Furthermore, it is valid that 2n   and 
2( 3) 4t   / , and after inclusion in the above equation we get: 

                                          5 4 3 26 2 (9 32 ) 15 0t t t t k t       .                                       (6) 
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From equation (6), we take only non-negative integer solutions. Since it is a polynomial of the fifth degree 

(variable t ) with integer coefficients, the integer zero point t  must be divided by the free term 15. We get: 

                                    

1, 0, 1, 2

3, 5, 3, 10

5, 28, 7, 50

15, 1729, 57, 3250

t k n

t k n

t k n

t k n









   

   

   

   

                                  (7) 

 

Since the diameter of G  is equal to 2, the case when 1   is not possible, so only cases remain: 

3,7and57  . 

                                                                                                                                                                      ▭ 

Moore graph of type (2,2) 

 

The simplest Moore graph of diameter 2 is the cycle 
5C . The graph is specific because it is the only cycle that 

is self-complementary, i.e. 5 5C C  is valid. 

 

5C
                                     5C

 

Fig. 4: Cycle 5C  and its complement 5C  

Although they belong to the class of simple graphs, cycles are very interesting graphs because of their 

adjacency matrix. In the following, we will state and prove a theorem that fully characterizes the spectrum of 

the adjacency matrix of the cycle 
nC . 

 

Theorem 2. The spectrum of the adjacency matrix A  of the cycle 
nC  is set 

2
( ) 2cos( ) , 1,2,..., 1

k
A k n

n




 
   
 

. 

 

Proof. Let Q  be a square matrix of order n  whose first row is equal to (0,1,0,...,0) . Each subsequent row is 

obtained from the previous one by moving each element one place to the right, and the last element comes 

first. So, the second row is (0,0,1,0,...,0) ,…, the penultimate row is (0,0,...,1) , and the last row is (1,0,...,0)

. For an arbitrary integer l , the matrix lQ  is a permutation matrix that has the number one in the first row at 

position 1l  , all other elements are zero, and each subsequent row is created from the previous one by moving 

each element to the right by one position. This makes sense for arbitrary l  since for l n  we take numbers 

modulo l  instead of l . The cycle adjacency matrix holds: 
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1( )nA C Q Q  . 

 

Using the eigenvalues of the matrix Q , we will determine the eigenvalues of the matrix ( )nA C . If 

1( ,..., )T

nw w w
 is an eigenvector of Q  corresponding to the eigenvalue  , then it holds: 

                                                   
2

1 1 1... n

n nw w w w     
. 

The equation 1n   has n  mutually distinct complex roots which can be written as i  where is it 
2

, ( 0,1,..., 1)
i

i ne i n


    . 

It follows that the spectrum of the matrix lQ  for arbitrary l  is equal to: 

2 ( 1)( ) {1, , ,..., }l l l n lQ     . 

For the eigenvalue of the matrix 
nC , we get: 

1( ) ( )k k

n k k k kA C u Qu Q u u      . 

It follows: 

2
2cos( ), 1,2,..., 1k k k

k n
n


     . 

                                                                                                                                                    ▭ 

Moore graph of type (3,2) 

 

A Moore graph of type (3,2) is more commonly known as a Petersen graph. The graph is extremely interesting 

because it very often appears as a counterexample to many statements in graph theory. Below, we will present 

the Petersen graph using some of its prominent properties. A Petersen graph is a simple 3-regular graph with 

10 vertices and 15 edges. See Fig. 5 a). 

 
a)                                                                  b) 

Figure 5: a) The general form of the Peterson graph;                   b) Construction of the Peterson graph 
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Proposition 2. Petersen graph is unique. 

Proof. [2] First, we construct a BFS tree with 10 vertices as in Figure 5. The edges of the tree are drawn with 

a solid straight line. All vertices except leaves have degree 3. It is necessary to add 6 more edges between 

leaves , , , ,e f g h i  and j , making sure that the resulting graph is 3-regular and that its diameter is equal to 2. 

This can be done in a unique way. In Figure 5, the new 6 edges are drawn with a broken line. The resulting 

graph is a Petersen graph. 

 

Through two propositions, we will present two more interesting properties of the Petersen graph, for the proof 

of which one figure will be sufficient [1]. 

Proposition 3. A Petersen graph is a complete bipartite graph with 10 vertices. 

Proof. Figure 6. 

Proposition 4. The Petersen graph is the complement of the line graph of the complete graph 5K . 

Proof. Figure 7. 

 

Figure 6: Petersen graph as graph (5,2)K  

 

 

 

5K           5( )K                   5( )K  

 

Figure 7: Petersen graph as graph 
5( )K  

 

Moore graphs of diameter 3 

 

In this paper, the last thing we will prove is that: a Moore graph of type ( ,3)  exists if and only if 2  , that 

is, that the only Moore graph of diameter 3 is cycle 
7C . 

To prove this claim, we will need the following auxiliary result: 
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Lemma 3. Let the polynomials ( )jP x  be defined as in Proposition 1 and let 2   and 2L   hold. If ( )LP x  

is irreducible over Q , then a Moore graph of type ( , )L  exists only in the case when 2  . 

Proof. As in the proof of Lemma 1, if   (  ) is an eigenvalue of the matrix A  then it is immediately 

shown that   is a root of ( )LP x . Considering that ( )LP x  is irreducible over Q , that ( )LP x  must divide the 

characteristic polynomial of the matrix A . We conclude that the root of ( )LP x  is an eigenvalue of A . 

From the construction of the polynomial ( )LP x , it is clear that it is a polynomial of degree L  and that its 

coefficients in addition to Lx  and 1Lx   are equal to 1. Let them be 1 2, ,..., L    roots of the polynomial ( )LP x  

that are different from  . According to Viet's formulas we get: 

1

1
L

m

m




  . 

Due to the irreducibility of the polynomial ( )LP x , the eigenvalue 1 2, ,..., L    must have equal multiples, 

which we will denote by k . From equation (1), for 2   we have: 

( 1) 1
1

2

L

n





  
   

 
. 

Furthermore, 

1 ( 1) 1

2

Ln
k

L L

 



   
   

  . 

Since ( ) 0tr A  , we obtain: 

1

0
L

m

m

k k  


   
. 

Using the formulation for number k , we conclude that the following holds 

 

                                                 ( 1) ( 1) ( 1) 0L L L                                                  (8) 

 

If we consider the left side in (8) as a polynomial in the variable 1  , then due to the condition 2L  , 

equation (8) has at most two positive solutions. However, 2   is a double solution of that equation, so no 

2   can be a solution. 

                                                                                                                                                   ▭ 

Theorem 3. A Moore graph of type ( ,3)  exists if and only if 2  . 

Proof. By Proposition 1, we have: 
3 2

3( ) 2( 1) ( 1)P x x x x       . 



 

345 

 

 

 

Assume the opposite, i.e. let there be a Moore graph of type ( ,3)  for some 2  . By Lemma 3, 
3( )P x

 
has a 

rational root s . Since 3( ) [ ]P x xZ  and its leading coefficient is 1, we can assume that s  is an integer. From 

3 ( ) 0P x  , we obtain: 

2 ( 1)
1

2 1

s s

s



 


. 

Note that the numbers 2 1s and s  are mutually prime, and so are the numbers 2 1s  and 1s . 

Therefore, we have 2 1 1s    from which we get 1  , which contradicts the assumption 2  .                                                                                                                                

                                                                                                                                               ▭ 

Conclusions 

 

In graph theory, Moore's graphs belong to a special class of graphs due to several applicable properties, and 

numerous researches are focused on finding Moore's graphs of a certain type[1],[3]. It is worth mentioning 

that in graph theory there is still an open problem of the existence of a Moore graph of type (57,2), i.e. although 

it can be calculated numerically, no example of such a graph has yet been found [4], [8], [9]. For that graph, 

the number of vertices was 3250 and the number of edges was 92625. Furthermore, regarding the problem of 

the existence of a Hamiltonian path and a Hamiltonian cycle of which connected graphs, a special type of 

Moore's graph, i.e. Peterson's graph, gives a partial answer to an as yet unproven statement: "Every connected 

graph that is transitive by vertices contains a Hamiltonian path". In addition to the problem of the existence of 

Moore's graphs, there is also the problem of the construction of these graphs. The Moore graph of type (7,2) 

belonging to the class of so-called "strongly regular graphs" was constructed by A. Hoffman and R. Singleton 

[13]. 
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