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Abstract 

 

  In this paper, the apparent movement of the Sun according to Mercury has been studied and a comparison of this movement has 

been made with the apparent movement of the Sun according to Earth. The curve of the apparent movement of Mercury is 

obtained by using quaternions. To achieve this, the celestial sphere is accepted to have a radius of r = 1. The equatorial plane of 

Mercury is intercepted by its elliptical plane on axis X of the coordinate system. This system coincides with the equatorial 

coordinate system of Mercury. The apparent movement of the Sun according to Mercury is accepted to begin at point (1, 0, 0). 

The curve drawn by this point is calculated by using quaternions as rotation operators. For both the daily and yearly apparent 

movements of the Sun according to Mercury, a quaternion each is defined. These quaternions are used to produce rotation 

operators for each movement. Afterward, a comparison is made between this curve and the curve produced by the apparent 

movement of the Sun according to Earth. This paper, in which the discipline of mathematics joins that of astronomy, helps present 

the usefulness of quaternions as rotation operators and simultaneously helps new astronomers perceive the apparent movement 

of the Sun on other planets. 
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1. Introduction 

 

The possibility of the existence of life on other planets has always intrigued and continues to intrigue 

mankind. There has been no evidence of life in the universe except on planet Earth. However, the curiosity 

about what life could be like on other planets considering their physical conditions can be satisfied by gathering 

data on these planets. 

One of these data points is the apparent movement of the Sun. As it is known, this movement consists of two 

different apparent movements of the Sun. The first one is the daily and the second is the yearly apparent 

movement of the Sun. The first movement enables the creation of the night and day. The second movement, 

combined with the inclination of the earth’s axis enabling the formation of an angle between the equatorial 

and elliptical celestial plane, enables the formation of the seasons. Both of these movements are also 

conditioned by the speed of the Earth’s motion around itself and the Sun. These movements exist in the other 

planets of the solar system as well but the parameters that enable these movements are different. This is 

reflected in visible changes in the length of day and night, and the formation of seasons on the other planets.  
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 Another aspect that has become part of this work is the calculation of these movements by using quaternions.  

As it is known, quaternions are very useful when it comes to the calculation of the rotational motions in 3-

dimensional spaces.  

This paper seeks to answer the question of what the apparent movement of the Sun would be like during a 

Mercurian year in the sky of Mercury. To calculate this curve the rotation operators produced by quaternions 

have been used. This calculation method has been previously used to calculate the apparent movement of the 

Sun according to planet Earth (Güçler et al. 2022). By finding the curve of the apparent movement of the Sun 

according to Mercury, the opportunity is created for a comparison to be made between it, and the curve of the 

apparent movement of the Sun according to Earth. 

 To understand and present the problem the author has benefited from the references (Güçler et al. 2022; 

Karaali 1985; Kızılırmak 1977; Kummer 1996; Lowenstein 2012; Motz and Duveen 1966; Woolard and 

Clemence1966). The details about the quaternions can be viewed from the references (Altman 1986; 

Delphenich 2012; Hacısalihoğlu 1983; Kuipers 1975; Kuipers 1998; Griffin 2017; Dong et al. 2020). The 

information needed for the other calculations is found in the references (Fisher and Ziebur 1965). The main 

idea that gave rise to this paper was first presented at the 5th International Conference of Natural Sciences and 

Mathematics - University of Tetova by the authors of this paper (Güçler 2023). 

 

2.  Preliminaries 

 

2.1. Quaternion’s algebra: A quaternion is a hyper-complex number. The most important rule of this invention 

of Hamilton is:   

𝑖2 =  𝑗2 =  𝑘2 =  𝑖𝑗𝑘 =  −1 𝑎𝑛𝑑 𝑖𝑗 =  𝑘 =  − 𝑗𝑖, 𝑗𝑘 =  𝑖 =  −𝑘𝑗 , 𝑘𝑖 =  𝑗 =  −𝑖𝑗                           (1) 

i, j, and k are the components of the vector part of the quaternion and they will be used to represent the standard 

orthogonal base of R3.  

The quaternion can be thought of as a quadruple of real numbers as it is shown below. 

𝑞 =  𝑞0 +  𝛼 =  𝑞0 +  𝑖𝑞1 + 𝑗𝑞2 +  𝑘𝑞3, 𝛼 =  𝑖𝑞1 + 𝑗𝑞2 +  𝑘𝑞3                                       

(2) 

where 𝑚0 is the scalar part and α is the vector part. 

Multiplication of quaternions is done according to the following rule  

For 𝑞 =  𝑞0 +  𝛼𝑞 =  𝑞0 +  𝑖𝑞1 + 𝑗𝑞2 +  𝑘𝑞3 and  𝑝 =  𝑝0 +  𝛼𝑝 =  𝑝0 +  𝑖𝑝1 + 𝑗𝑝2 +  𝑘𝑝3  

𝑞 𝑝 =  (𝑞0 +  𝛼𝑞)  (𝑝0 +  𝛼𝑝)                                  

(3) 

        =  𝑞0𝑝0 −  ⟨𝛼𝑞 , 𝛼𝑝⟩  +  𝑞0𝛼𝑝 +  𝑛0𝛼𝑞 +  𝛼𝑞 𝛬 𝛼𝑝                 

“⟨, ⟩” represents the scalar product of vectors, and “𝛬” represents the cross product of vectors. 

The complex conjugant of 𝑞 =  𝑞0 +  𝑖𝑞1 + 𝑗𝑞2 +  𝑘𝑞3 is 𝑞∗ =  𝑞0 −  𝑖𝑞1 −  𝑗𝑞2 −  𝑘𝑞3                              

(4) 

 

Definition: The quaternion whose scalar part is zero is called a pure quaternion. 

The quaternion that will be used as a rotation operator is: 

𝑞 =  𝑞0 +  𝛼 =  𝑐𝑜𝑠 𝜑 +  𝑢 𝑠𝑖𝑛 𝜑 and  𝑞∗ =  𝑞0 −  𝛼 =  𝑐𝑜𝑠 𝜑 −  𝑢 𝑠𝑖𝑛 𝜑                                           

(5) 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=John%20H.%20Lowenstein&eventCode=SE-AU
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where  𝑢 =  𝛼/  |𝛼| =  𝛼/𝑠𝑖𝑛 𝜑 

 

Theorem 1: For any 𝑞 =  𝑞0 + 𝒒 =  𝑐𝑜𝑠 𝜑 +  𝑢 𝑠𝑖𝑛 𝜑 unit quaternion (where 𝑞0 is the scalar part and q is 

the vector part of the quaternion) and for any vector 𝑣 𝜖 𝑅3 the action of the operator  

𝐿𝑞(𝑣)  =  𝑞 ×  𝑣 ×  𝑞∗ 

on v may be interpreted geometrically as a rotation of the vector v through an angle 2φ about q as the axis of 

the rotation. (Kuipers 1998)              

 

                                                                                  

Theorem 2: Suppose that q and p are unit quaternions that define the quaternion rotation operators: 

𝐿𝑞(𝑢)  =  𝑞 ×  𝑢 × 𝑞∗𝑎𝑛𝑑 𝐿𝑝(𝑣)  =  𝑝 ×  𝑣 × 𝑝∗ 

Then the quaternion product pq defines a quaternion operator 𝐿𝑝𝑞 which represents a sequence of operators, 

𝐿𝑞 followed by 𝐿𝑝. The axis and the angles of rotation are those represented by the quaternion product, 𝑟 =

 𝑝 ×  𝑞. (Kuipers 1998)     

           

2.2 Apparent Movement of the Sun According to Earth: As it is known, the Earth rotates every day in a positive 

motion around its own axis and parallel to the equatorial plane. This motion is reflected as the apparent 

movement of the Sun, occurring in the negative direction. 

It is also known that the Earth rotates every year around the Sun in the positive direction, in an ecliptic orbit 

found in the ecliptic plane. However, this motion makes it appear as if it is the Sun moving around the Earth, 

during the year in a positive direction (Figure 1). The ecliptic plane intersects with the celestial equatorial 

plane and creates a 23027’ angle. (Karaali 1985)       

      

 
Figure 1. The elliptical orbit made by the actual motion of the Earth (a) the elliptical circle made by the annual motion of the 

Sun (b) 
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2.3. The Relationship Between Latitude and the Pole Height of a Point on the Earth: In Figure 2, the latitude 

e of a C location on the Earth is shown. AB is the Earth’s equator and P1P1
′ is its axis. The North P pole of the 

celestial sphere is on the extension of OP1. The height of the pole P at a given place is equal to the angular 

distance of P from the horizon of that place. 

This height is indicated by hp in Figure 2. On the other hand, since the dimensions of the Earth are negligible 

compared to the dimensions of the celestial sphere, the pole P can be considered on the parallel line drawn 

from C to OP1.  

So 𝐷𝐶�̂� is equal to pole height hp. Also, the angles 𝐷𝐶�̂� and 𝐶𝑂�̂� are congruent. It follows that the angles hp 

and e are equal. So, the pole height at a given point on the Earth is equal to the latitude of that place. In Figure 

3, examples for two different latitudes are given. (Kızılırmak 1977) 

 

Figure 2. The pole height of any given point on the Earth is equal to the latitude of that point (hp = e). 
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Figure 3.  The celestial sphere for 450 and 100 northern latitudes 

 

Figure 4. The system in which the apparent movement of the Sun occurs 

 

2.4 The Equation of the Curve of the Apparent Movement of the Sun According to Earth: In this presentation, 

it is assumed the apparent movement of the Sun occurs in ideal conditions. So, it will be accepted that the 

apparent movement of the Sun in the ecliptic plane occurs in a circular orbit with a constant angular velocity. 

Now let plane E represent the ecliptic plane while plane XY represents the plane of the celestial equator, and 

angle ɛ represents the angle 0  23 27e   (Figure 4). In this case, the point  0,  0,  0 represents the Earth. In 

addition, the positive direction of axis X will represent the Aries constellation.  

Let 1Q  be the quaternion that will realize the movement in the positive direction around axis N. Let 𝑄2
∗
 be the 

quaternion that will realize the movement in the negative direction around axis Z. The starting point of the 

movement is    1,  0,  0P  . The vector OP is    1,  0,  0v  . First, let this vector be transferred to the 

quaternion space so: 

   1,  0,  0      0   0   0   v vector w i j k i         corresponds to a pure quaternion. 

The first rotation movement will be realized around axis        u j sin k cose e    with θ angle. The second 

rotation movement will be realized around axis k with a (cθ) angle in a negative direction. In this case, the 𝑄1 

and 𝑄2
∗
 quaternions that will operate as rotation operators are: 

For    a sin e  and    b cos e  

1   / 2 –    / 2    / 2Q cos j asin k bsin          and     𝑄2
∗ =  𝑐𝑜𝑠(𝑐𝜃)/2 −  𝑘 𝑠𝑖𝑛(𝑐𝜃)/2                           

(6) 

According to Theorem 2 and if 
*

2 1  Q Q Q  and   w i  then 

 *
2 1

*

1       
Q Q

L w Q i Q                                           

(7) 
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So, the calculations are as such: 

 *

2 1 ( ( ) ( ) ) 2    / 2   / 2    / 2 –    / 2    /Q Q Q cos c k sin c cos j asin k bsin                                           (8) 

Accordingly, when the rotation operator produced by the Q quaternion is applied to  

   ,  0,  0w i , the pure quaternion  1 2 2   ,  ,  W W W W is obtained as shown below. 

*    W Q i Q                                                             (9) 

When the calculations are made 

 1 2 3( ( ) ( ) ) ( )  ,   ( ( ) ) , W cos c cos bsin c sin i W bcos c sin sin c cos j W asin k                                              (10) 

is found. As a result of transferring pure quaternion W to the vector space,  1 2 3  ,  ,  V V V V is obtained. 

For 0    2 ,    365,25c     (365.25 the number of days in a year), 𝑎 = sin 23027′ = 0,40 and 𝑏 =

𝑐𝑜𝑠 23027′ = 0,89  

𝑉1 =  𝑋 =  𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 (365,25𝜃)  +  0,89 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 (365,25𝜃)  

𝑉2 =  𝑌 =  0,89 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 (365,25𝜃)  −  𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 (365,25𝜃) 
𝑉3 =  𝑍 =   0,40 𝑠𝑖𝑛 𝜃

                                      (11) 

This is the equation of the curve of the Sun’s apparent movement according to Earth. (Güçler et al. 2022) 

 

3. The Equation of the Curve of the Apparent Movement of the Sun According to Mercury and its 

Comparison with the Sun’s Apparent Movement According to Earth 

 

In the following part, the finding of the equation of the apparent movement of the Sun according to Mercury 

as well as its comparison with the apparent movement of the Sun according to Earth have been taken into 

consideration. 

 

3.1 The Equation of the Curve of the Apparent Movement of the Sun According to Mercury: Mercury, like all 

other planets in the solar system, moves around the Sun in an elliptical orbit in the elliptical plane according 

to Mercury. The angle between the elliptical plane of Mercury and the equatorial plane of Mercury is 𝜀 =

 002,04′ . In this presentation, this orbit is accepted as circular and the angular velocity in this orbit is accepted 

as a constant. The planet Mercury completes this movement in the positive direction. From the point of view 

of an observer on Mercury, this movement appears to be performed by the Sun. In concordance with the 

apparent movement of the Sun in the elliptical plane around Earth, this apparent movement is completed by 

the Sun in the positive direction. One full rotation in this orbit is accepted as one Mercurian year.  

The second movement of Mercury is the one it performs around its own axis parallel with the Mercurian 

equatorial plane. This rotation, in concordance with the apparent daily movement of the Sun according to 

Earth, occurs in the positive direction therefore the apparent movement of the Sun occurs in the negative 

direction. During a Mercurian year, Mercury completes 0,5 rotations around its axis. So, in a Mercurian year, 

there are approximately 0,5 Mercurian days.   

In concordance with the apparent movement of the Sun according to Earth;  

For 0 ≤  𝜃 ≤  2𝜋,   𝑐 =  0,5 ,  𝑎 = 𝑠𝑖𝑛 002,04′~ 0  and   𝑏 = 𝑐𝑜𝑠 002,04′ ~ 1 
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𝑉1 =  𝑋 =  𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 (0,5𝜃)  +  𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 (0,5𝜃)  

𝑉2 =  𝑌 =  𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 (0,5𝜃)  −  𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 (0,5𝜃) 
𝑉3 =  𝑍 =   0

                                        (12) 

This is the equation of the curve of the Sun’s apparent movement according to Mercury.  

 

3.2 Comparison Between the Apparent Movement of the Sun According to Mercury with the Sun’s Apparent 

Movement According to Earth: By finding equation (12), the opportunity to compare the graph created by this 

equation with the one created by equation (11) arises. If the graphic of the equation (11) was drawn, this curve 

would cover the entirety of the sphere found between the planes 0    23 27  z sin   and 𝑧 =

 𝑠𝑖𝑛 23027′ because the constant c is   365,25c  . For this reason, to be able to comprehend the shape of the 

curve,   12c   is chosen instead of   365,25c  . On the other hand, since the planet Mercury makes one 

complete rotation around itself in two years, to see this movement in its entirety, the value of angle 𝜃 is chosen 

as 0 ≤  𝜃 ≤  4𝜋. Based on these accepted changes, the graphic shown in Figure 5 is obtained. 

The graphs that are obtained, are placed in the sky of each planet in the way they would be seen during a year, 

on the horizon of an observer that is found at one of the poles of each planet. On planet Earth, the Sun stays at 

the poles for half a year, and on planet Mercury, the Sun stays for a whole year. The maximal altitudes from 

the horizon of each planet, however, have a difference of approximately 𝑠𝑖𝑛 23025′.  
 

 
Figure 5. The curve of the apparent movement of the Sun for Latitude = 900 

 

 In Figure 6, the graphs that are obtained, are placed in the sky of each planet in the way they would be seen 

during a year on Earth and two years on Mercury, on the horizon of an observer that is found on the equator 

of each planet. The rays of the sun are perpendicular to the horizontal plane on both planets. The duration of 

the days and nights is equal. However, because a year on Earth has approximately 365 Earth days and a year 
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on Mercury has only 0.5 Mercurian days, the difference in temperature between days and nights is greater on 

Mercury. 

In Figure 7, the graphs that are obtained, are placed in the sky of each planet in the way they would be seen 

during a year for Earth and during two years for Mercury, on the horizon of an observer located at a latitude 

of 450 on each planet. The duration of nights and days varies during the year on planet Earth. In contrast, on 

planet Mercury, these durations hardly change at all. The plane of sun rays that reach an observer during a day, 

changes over the days of the year, on Earth. However, on Mercury, nothing changes. These two data points 

show that on Mercury, seasons do not exist as they exist on Earth.  

 
Figure 6. The curve of the apparent movement of the Sun for Latitude = 00 

 

 
Figure 7. The curve of the apparent movement of the Sun for Latitude = 450 
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4. Conclusion 

 

   To conclude, based on the graphs of Figure 5 – Figure 7, it can be said that a day in Mercury is two Mercurian 

years long. The temperature changes between night and day are immense. The length of night and day is the 

same on the entire planet. Seasons do not exist in the way they do on Earth. 
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