CHAIN OF A SET IN A COVERING AND CHAIN COMPONENTS UP TO A COVERING

Emin DURMISHI^{1*}, Zoran MISAJLESKI², Flamure SADIKU¹, Alit IBRAIMI¹

^{1*} Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Tetova, North Macedonia ² Chair of Mathematics, Faculty of Civil Engineering, Ss. Cyril and Methodius University *Corresponding author e-mail: emin.durmishi@unite.edu.mk

Abstract

A chain in the open covering V of a topological space X that joins $U \in V$ and $V \in V$ is a finite sequence of elements of V such that U is the first member, V is the last member and every two consecutive members of the sequence have a nonempty intersection. By *chainV*, $V \in V$ it is meant the union of all elements of the covering for which there are chains joining them with V and *chainV* is the set that consists of all sets *chainV* for each $V \in V$.

A chain in V that joins $x \in X$ and $y \in X$ is a finite sequence of elements of V such that x is contained in the first element of the sequence, y is contained in the last element and every two consecutive elements of the sequence have a nonempty intersection. A V-chain component of an element $x \in X$, Ch(x, V), is the set that consists of all $y \in X$ such that there exists a chain in V that joins x and y.

We prove that chainV = Ch(x, V) for any $V \in V$ and any $x \in V$, hence chainV consists of V -chain components. As a consequence, chain connectedness is characterized using the chainV notion.

Keywords: Chain, Star of a set, Open covers, Chain connectedness.

1. Introduction

In [3] by using the notion of chain and coverings of a topological space, it is characterized by the connectedness of the space. In [2] and [4] in a similar way the notion of chain connectedness of a set is introduced. In [1] the notion of a chain of a set in a covering is introduced.

Here we characterize and give some equivalences for some notions used in this literature.

1.1. V-chain relation: Let X be a topological space and V be an open covering of the space X. For any two points $x, y \in X$ we say that they are V-chain related if there exists a finite family $V_1, V_2, ..., V_n$ in V such that $x \in V_1, y \in V_n$ and $V_i \cap V_{i+1} \neq \emptyset$, $\forall i \in \{1, 2, ..., n-1\}$. We denote that with x = y.

The family $V_1, V_2, ..., V_n$ is called a chain in V joining x and y.

The relation " $_{v}$ " is an equivalence relation in X. For a fixed $x \in X$, the class represented by x will be denoted by Ch(x, V) and will be called a V-chain component of x. In [2] it is proved that V-chain components are clopen sets.

1.2. Chain of a set in a covering: In [1] it is introduced the notion of chain between two elements of the cover. A chain in V from $U \in V$ to $V \in V$ is any sequence $V_1, V_2, ..., V_n$ in V such that $U \cap V_1 \neq \emptyset, V \cap V_n \neq \emptyset$ and $V_i \cap V_{i+1} \neq \emptyset, \forall i \in \{1, 2, ..., n-1\}.$

For $V \in V$ by *chainV* it is denoted the set $chainV = \bigcup \{W \in V \mid \text{ there exists a chain in } V \text{ from } V \text{ to } W \}$ and by *chainV* the set *chainV* = {*chainV* | $V \in V$ }.

1.3. Star of a set in a covering: For $V \in V$, by star of V we mean the set $st(V, V) = \bigcup \{W \in V | V \cap W \neq \emptyset\},\$

by star of V of degree n (n > 1) the set defined by the recursive formula $st^{n}(V, V) = st(st^{n-1}(V, V), V)$, and

the *infinite star of* V the set $st^{\infty}(V, V) = \bigcup_{n=1}^{\infty} st^n(V, V)$.

2. V -chain components and *chainV* sets

In the following theorem we claim that *chainV* sets are V-chain components.

Theorem 2.1. Let $V \in V$ and $x \in V$. Then chainV = Ch(x, V).

Proof. Let $y \in chainV$. Then $y \in W$ for some $W \in V$ such that there exists a chain $V_1, V_2, ..., V_n$ in V from V to W. Then $V, V_1, V_2, ..., V_n, W$ form a chain in V from x to y, hence $chainV \subseteq Ch(x, V)$.

Now, let $y \in Ch(x, V)$. Then there is a chain in V from x to y, thus there exists $W \in V$ a neighborhood of y such that there is a chain from V to W. This implies that $Ch(x, V) \subseteq chainV$. \Box

The following corollaries are a direct consequence of Theorem 2.1.

Corollary 2.1. *chain* V consists of all V-chain components of X.

Corollary 2.2. Let $V \in V$ and $x \in chainV$. Then chainV = Ch(x, V).

The set *chainV* can also be expressed using the infinite star of V in V.

Proposition 2.1. $chain V = st^{\infty}(V, V)$ for all $V \in V$.

As a consequence, we have:

Corollary 2.3. Let $V \in V$ and $x \in st^{\infty}(V, V)$. Then $st^{\infty}(V, V) = Ch(x, V)$.

2.1. V-chain connectedness and chain V-nearness: For any two points $x, y \in X$ and for any covering V of X, we say that x and y are V-near if there exists $V \in V$ such that $x, y \in V$.

Proposition 2.2. Two points x and y are V-chain related if and only if they are *chain* V-near.

Proof. Let x and y be V-chain related. Then, from Theorem 2.1, $x, y \in chainV$ for some $V \in V$, hence they are *chain* V-near.

Conversely, let x and y be *chain* V -near. Then there is *chain* V \in *chain* V such that $x, y \in$ *chain* V, thus, using Theorem 2.1, x and y are V -chain related. \Box

3. Chain connectedness and chainV sets

With the help of V-chain relation, in [2] and [4] it is introduced the notion of chain connectedness. Here we express this notion using *chainV* sets.

3.1. Chain relation and chain V-nearness: For any two points $x, y \in X$ we say that they are chain related in X if $x \sim y$ for any covering V of X. We denote that with $x \sim y$.

The relation "~" is an equivalence relation in X. For a fixed $x \in X$, the class represented by x will be denoted by Ch(x) and will be called *a chain component of x*. Chain components are closed sets. In [3] it is proved that chain components coincide with quasicomponents of the space.

We show that chain relation can be expressed with the help of the notion of *chain* V-nearness.

Proposition 3.1. Two points x and y are chain related if and only if they are *chain* V-near for all coverings V of X.

Proof. A direct consequence of Proposition 2.2. \Box

As a consequence, the chain components are expressed by using *chainV* sets.

Corollary 3.1. For any $x \in X$ we have $Ch(x) = \bigcap_{V} \{chainV \mid V \in V, x \in V\}.$

3.2. Chain connected sets and chainV sets: For a given set $C \subseteq X$ we say that it is chain connected in X if any two points $x, y \in C$ are chain related in X.

In [2] and [4] it is proved that any connected set is chain connected in the space, but the converse does not hold.

Proposition 3.2. If C is chain connected in X, then $C \subseteq Ch(x)$ for any $x \in C$.

In [2] chain connected sets are characterized using the infinite star of a singleton.

Theorem 3.1. The set *C* is chain connected in *X* if and only if for every $x \in C$ and every covering *V* of *X*, $C \subseteq st^{\infty}(x, V)$.

Using this theorem and previous results, we have the following corollaries.

Corollary 3.2. The set *C* is a chain connected in *X* if and only if for every $x \in C$ and every covering *V* of *X*, $C \subseteq chainV$, where $V \in V$ is a neighborhood of *x*.

Corollary 3.3. The set *C* is chain connected in *X* if and only if for every $x, y \in C$ and every covering *V* of *X*, *x* and *y* are *chain* V-near.

4. Conclusions

The notion of chain is a good tool for proving results related to connectedness. Here we showed that some notions defined with the help of chains, used in different articles, have equivalent meanings. We proved that V-chain components coincide with *chainV* sets and $st^{\infty}(V, V)$, for any member V of the covering V of the space. Hence, the notion of chain connectedness was characterized using *chainV* sets and star infinity of members of coverings.

References

- [1]. Buklla, Abdulla, and Gjorgji Markoski. 2019. Proximately Chain Refinable Functions. *Hacettepe Journal of Mathematics and Statistics* 48: 1437–42.
- [2]. Misajleski, Zoran, N. Shekutkovski, and A. Velkoska. 2019. Chain Connected Sets in a Topological Space. *Kragujevac Journal of Mathematics* 43: 575–86.
- [3]. Shekutkovski, Nikita. 2016. On the Concept of Connectedness. Mat. Bilten 50: 5–14.
- [4]. Shekutkovski, Nikita, Zoran Misajleski, and Emin Durmishi. 2019. Chain Connectedness. AIP Conference Proceedings. Vol. 2183: 030015-1-030015-4.