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Abstract 

 

 This paper aims to present some computations related to numerical semigroups with embedding dimension 3. We study a simple 

problem regarding the packaging methods of some products connected with some invariants of the numerical semigroup. We 

tried to define the algorithm that produces simultaneously a presentation of the semigroup by three generators and three relations 

and show how to use it for visualizing the different ways of buying certain products in the market We use the GAP package to 

find the exact number of products we want to buy, no one above no one below, where amounts correspond with finite sums of 

integers in the set {𝑎, 𝑏, 𝑐} or numerical semigroup 〈𝑎, 𝑏, 𝑐〉. 
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1. Introduction 

 

Semigroups have found applications in different areas. [5] deals with the applications of semigroups in 

general and regular semigroups in particular. There are studied semigroup applications to computer science, 

biological science, and sociology. It discussed that semigroups can be used in biology to describe certain 

aspects in the crossing of organisms, in genetics, and in consideration of metabolisms. Also [6] presents a 

panorama of various applications: Semigroups and asymptotics, Semigroups for dynamical systems, Form 

methods and perturbations of semigroups, Semigroups, and partial differential equations. 

The following definitions are taken from [1] and [4]. 

 

Definition 1.1 Let 𝑆 be a numerical semigroup and 𝐴 be a subset of 𝑆. We say that 𝐴 is a system of generators 

of 𝑆  if 𝑆 =  {𝑘1𝑎1  + ··· + 𝑘𝑛𝑎𝑛  | 𝑛, 𝑘1 ,..., 𝑘𝑛  ∈  𝑁 , 𝑎1 ,..., 𝑎𝑛  ∈  𝐴}.  The set 𝐴  is a minimal system of 

generators of 𝑆 if no proper subset of 𝐴 is a system of generators of 𝑆. 

 

Definition 1.2 For the nonempty subset S of ℕ𝟎, we will say that it is a numerical semigroup if 𝑆 is closed 

concerning to the addition operation, it contains 0 and ℕ𝟎\𝑆 is a finite set. 

 

Definition 1.3 Let S be a numerical semigroup and let {n1  <  n2  < ··· <  np} be its minimal system of 

generators. Then  
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 n1  is known as the multiplicity of 𝑆 , denoted by m(S). It is the smallest element in the minimal 

generator set of S. 

 The cardinality of the minimal system of generators, p, is called the embedding dimension of S and 

will be denoted by e(S). 

 

 The Apery set n in S, where n ≠ 0 is Ap(S, n)  =  {s ∈  S | s − n ∉  S}. 

 The set of elements in G(S)  =  N\S is known as the set of gaps of  S. Its cardinality is the genus of S,
g(S). 

 A gap g of a numerical semigroup S is an isolated gap if g − 1, g + 1 ∈ S . We will denote by 𝐼(𝑆)  the 

set of all isolated gaps of 𝑆.  

 Frobenius number of S is the greatest integer not in S. In the literature it is sometimes replaced by the 

conductor of S, which is the least integer x such that x + n ∈  S for all n ∈  N.  

 The smallest element of 𝑆  such that all larger integers are likewise elements of  𝑆  is called the 

conductor, it is F(S) + 1. 

 An integer z is a pseudo-Frobenius number of S if z +  S \ {0}  ⊆  S. Thus the Frobenius number of 

S is one of its pseudo-Frobenius numbers. The type of a numerical semigroup is the cardinality of the 

set of its pseudo-Frobenius numbers. 

 

2.  Main part 

 

Next, find some invariants of numerical semigroup S = 〈5,7,23〉 with embedding dimension 3 on GAP.  

First, we loaded the numericalsgps package and then execute the code for some invariants of S as following: 

 

gap> LoadPackage("numericalsgps");; 

gap> S:=NumericalSemigroup(5,7,23); 

<Numerical semigroup with 3 generators> 

gap> EmbeddingDimension(S); 3 

gap> S{[50..70]}; 

[ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ] 

gap> NextElementOfNumericalSemigroup(16,S); 17 

gap> SmallElementsOfNumericalSemigroup(S); [ 0, 5, 7, 10, 12, 14, 15, 17, 19 ] 

gap> MinimalPresentationOfNumericalSemigroup(S); 

[ [ [ 0, 4, 0 ], [ 1, 0, 1 ] ], [ [ 5, 3, 0 ], [ 0, 0, 2 ] ], [ [ 6, 0, 0 ] 

gap> AperyListOfNumericalSemigroupWRTElement(S,5); [ 0, 21, 7, 23, 14 ] 

gap> AperyListOfNumericalSemigroup(S); [ 0, 21, 7, 23, 14 ] 

gap> FrobeniusNumber(S);18 

gap> ConductorOfNumericalSemigroup(S);19 

gap> GenusOfNumericalSemigroup(S);11 

gap> MultiplicityOfNumericalSemigroup(S);5 

gap> PseudoFrobeniusOfNumericalSemigroup(S);[ 16, 18 ] 
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This means that semigroup S is { 0, 5, 7, 10, 12, 14, 15, 17, 19, →}, where the arrow means that every integer 

larger than 19 is in the set. NextElementOfNumericalSemigroup(S, r) returns the least integer greater 

than 𝑟 belonging to 𝑆. If we take a nonzero element 𝑛 in the semigroup, its Apéry set has exactly 𝑛 elements.  

 

Lemma 2.1. [1] Let A be a nonempty subset of N. Then〈A〉 is 𝑎 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  

𝑔𝑐𝑑(A)  =  1. 

 

Lemma 2.2. [2] Let 𝑆 be a numerical semigroup and let 𝑛 be a nonzero element of 𝑆. Then  𝐴𝑝(𝑆, 𝑛)  =  {0 =

 𝑤(0), 𝑤(1), . . . , 𝑤(𝑛 − 1)}, where 𝑤(𝑖) is the least element of 𝑆  congruent with 𝑖  modulo 𝑛 , for all 𝑖 ∈

 {0, . . . , 𝑛 − 1}. 
 

Next, we prove a very important property of Apery set of numerical semigroups with embedding dimension 

three. 

 

Lemma 2.3. Let 𝑆 be a numerical semigroup with embedding dimension three generated by {𝑛1, 𝑛2, … , 𝑛𝑝}. 

Let 𝑑 =  𝑔𝑐𝑑{𝑛1, 𝑛2, … , 𝑛𝑝−1} and set 𝑇 = 〈𝑛1/𝑑, 𝑛2/𝑑, … , 𝑛𝑝−1/𝑑, 𝑛𝑝〉. Then 

 

𝐴𝑝(𝑆, 𝑛𝑝)  =  𝑑(𝐴𝑝(𝑇, 𝑛𝑝)). 

 

Proof. 

 If  𝑤 ∈  𝐴𝑝(𝑆, 𝑛𝑝),  then 𝑤 ∈〈𝑛1, . . . , 𝑛𝑝−1〉 . Hence 𝑤/𝑑 ∈  〈𝑛1/𝑑, . . . , 𝑛𝑝−1/𝑑〉 ⊆ 𝑇.  If 𝑤/𝑑 −

𝑛𝑝 ∈  𝑇, then 𝑤 − 𝑑𝑛𝑝 ∈  𝑆, which is impossible. Now take 𝑤 ∈  𝐴𝑝(𝑇, 𝑛𝑝). Then 𝑤 ∈  〈𝑛1/𝑑, . . . , 𝑛𝑝−1/

𝑑〉 , and thus 𝑑𝑤 ∈ 〈𝑛1, . . . , 𝑛𝑝−1〉 ⊆  𝑆 . If 𝑑𝑤 −  𝑛𝑝  also belongs to 𝑆 , then 𝑑𝑤 −  𝑛𝑝  =  𝜆1𝑛1  + ···

 + 𝜆𝑝−1 𝑛𝑝−1  +  𝜆𝑝 𝑛𝑝  for some  𝜆1, . . . , 𝜆𝑝  ∈  𝑁. Since 𝑆 is a numerical semigroup 𝑔𝑐𝑑{𝑛1, . . . , 𝑛𝑝}  =  1, 

which implies that 𝑔𝑐𝑑{𝑑, 𝑛𝑝}  =  1. This leads to 𝑑|(𝜆𝑝  +  1), because (𝜆𝑝  +  1)𝑛𝑝  = 𝑑𝑤 −  (𝜆1𝑛1  + ···

 + 𝜆𝑝−1 𝑛𝑝−1). But then 𝑤 =  
𝜆1𝑛1

𝑑
 + ···  + 

𝜆𝑝−1 𝑛𝑝−1

𝑑
 +  

𝜆𝑝+1

𝑑
 𝑛𝑝, with 

(𝜆𝑝  +  1)/𝑑 a positive integer, contradicting that 𝑤 ∈  𝐴𝑝(𝑇, 𝑛𝑝).  

 

2.1. Application of numerical semigroup in the market: The problem is simple. We want to buy a certain 

amount of any product and the store offers boxes of 𝑎, 𝑏, 𝑐 (as it was in MacDonnald’s sometime in the last 

century). We want to have the exact number of products we want to buy, no one above no one below. Notice 

that the amounts correspond with finite sums of integers in the set {𝑎, 𝑏, 𝑐} and thus we are talking about the 

numerical semigroup 〈𝑎, 𝑏, 𝑐〉. So to show how many ways of buying these products do we have in the 

range {0,…,60} we use gap packet numericalsgps and gap function NrRestrictedPartitions as follows: 

 

 

 

 

 

https://www.gap-system.org/
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S:=NumericalSemigroup(𝑎, 𝑏, 𝑐); 

Plot([0..60], x->NrRestrictedPartitions(x,[ 𝑎, 𝑏, 𝑐]),  

 rec( 

title := "Different ways to buy this many products", 

          xaxis := "n", 

yaxis := "Number of expressions of n in terms of the boxes",  

xaxis := "Number of products, n", type:="bar")); 

 

Example 1.  

How many ways of buying products do we have in the range {0,…,60} if the buy offers boxes of 6,13,23 

amounts? 

 
Figure 1. 

 

It is clear that for elements outside ⟨6,13,25⟩ there will be no possible choice of boxes to get that specific 

number of products. 

 

Gaps(S); 

[ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 26, 28, 29, 32, 34, 35, 38, 41, 44, 47, 53, 59 ]. 

 

So the amounts of products that we cannot buy with this box offer are precisely the gaps of 𝑆. 

Next to the above bar diagram we give the minimum number of boxes required to obtain the dessired number 

of products in the interval [0. .60]. 
 

sizes:=[ 𝑎, 𝑏, 𝑐];; 

realizable:=Intersection(S,[0..60]);; 

Plot([realizable, x->NrRestrictedPartitions(x,sizes),  

 rec(title := "Different ways to buy this many products", 

          xaxis := "n", 

yaxis := "number of expressions of n in terms of the boxes",  

xaxis := "number of products, n", type:="bar")],  

[realizable, x->Minimum(List(RestrictedPartitions(x,sizes),Length)),  

 rec(type:="line", name:="min # boxes",)], 
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[realizable, x->Maximum(List(RestrictedPartitions(x,sizes),Length)),  

 rec(type:="line", name:="max # boxes",)]); 

 

Example 2. 

How many ways of buying minimum boxes of products do we have in the range {0, … ,60} if the store offers 

boxes 6, 13 and 25 and we want an exact number of products? 

 
Figure 2. 

 

From diagram we see that to buy exactly 50 products we have possibilities: Two boxes with 25 products 

(minimal number of boxes) or four boxes with 6 products and two with 13 products (maximal number of 

boxes). Also, if we put  

 

gap> p:=RestrictedPartitions(50,sizes); 

[ [ 13, 13, 6, 6, 6, 6], [ 25, 13, 6, 6], [ 25, 25]] 

 

we get the same answer. 
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