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Abstract 
 

In this paper, we explore the role of financial signal’s spectrum on visual representational momentums and its effectiveness as 

visual attention allocation strategy during a financial visual extrapolation task. This paper aims to understand whether visual 

attention is allocated more on looking into the “bright” or “dark” future, and whether such a visual attention allocation choice is 

indeed strategically effective. Preliminary results indicate that spectral properties of the S&P 500’ signal do have a statistically 

significant role on generating visually optimistic and pessimistic representational momentums, which is statistical evidence for 

behavioral markers responsible for visual extrapolation capabilities which human observers have developed throughout 

evolution. Further results of the analysis indicate that the effectiveness of such strategic visual extrapolation capability is indeed 

influenced by spectral properties of the S&P 500’ signal which biases twice as much the extrapolation effectiveness by lowering 

it for cases when visual attention is allocated on the “bright” financial future compared to when the visual attention is allocated 

on the “dark” financial future of the financial graph that is being visually extrapolated. We conclude that financial extrapolation 

as a predictive tool is much more than a statistical and computational endeavor and investors do have the capability to mentalize 

the visual representational momentum and to make use of this as a tool for an effective visual extrapolation of the financial 

graphs. 
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1. Introduction 
 

Financial analysts are exposed daily to various graphically represented data containing important financial 

information on behalf of the dynamics during a past period. Their tendency to extrapolate visually the future 

values based on the past period in the graph, remains the key part of predictive financial analysis (Zhang 2020; 

Beattie and Jones 2001). Their visual attention resources are limited both in the scope of time and space, 

therefore when visually extrapolating a graph, they must allocate visual attention strategically (in time and 

space) as to maximize their predictive capability (Warren et al. 2012). On the other hand, decision-making 

under uncertainty has been subject of research of signal detection theory in terms of three major applications: 

sensitivity of the observer with regards to how hard is to detect the target stimulus (Smith and Ratcliff 2009; 

Banerjee and Green 2015), the observers’ bias on behalf of likelihood of responding more liberally or 

conservatively to stimulus detection and compressed sensing where the observer is capable of recovering high 

levels of information from a detection process build upon a few linear measurements. In this paper, we make 

use of the signal detection theory to contextualize the dynamic visual extrapolation bias in terms of the latter 

three concepts, as to explore its link with the frequency properties of a financial signal measured in frequency 

domain.  

Let us consider a financial analyst who based on the graphical information (financial signal) presented to her, 

must decide whether a financial signal will go UP, DOWN or being CONSTANT, in the next period. Such 

situations are ambiguous, uncertain and in many cases the evidence is not obvious which usually requires a 

technical analysis of the signal’s momentums caused by the market sentiment (Picasso et al. 2019). As such, 
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the financial analyst performs a dynamic extrapolative visual search throughout the graphical information and 

this process of visual search can be expressed in terms of proportion of time that the observer focuses her 

visual attention resources on an area of interest of upper-right corner (representing the “bright” future) versus 

lower-right corner (representing the “dark” future), which corresponds with the notion of visual motion 

extrapolation in cognitive sciences (Battaglini and Ghiani 2021; Warren et al. 2012). The strategic nature of 

this visual attention allocation relies on the fact that financial observers do have a time constraint when 

formulating an optimal decision due to the dynamic (and stochastic) nature of the financial signals.  

Visual motion extrapolation research has been investigating how the observer is making use of the object’s 

past trajectory to predict its location in the near future (Hogendoorn 2020). Such research acknowledges that 

the visual system faces with a computational challenge as to compute the extrapolation of the position of a 

moving object while the time delay in neural transmission is an inherent struggle to deal with as not to miss 

localize the future position of the moving object while the brain processes its current position. The notion of 

representational momentum has emerged as one (among many) of the explanations of the perceived 

displacement of the moving object (Kimura 2021). Representational momentum considers the additional 

imaginative motion that observers report to “see” when the target moving object suddenly disappears from its 

trajectory. It is a sort of perceptual forward displacement of the motion trajectory which corresponds with a 

neurobiological extrapolation mechanism (Merz et al. 2020).  

The notion of momentum in kinematics is described as the product of object’s mass and velocity, where the 

notion of representation considers the observers’ mental representation of the motion of the object. In context 

of visual graph extrapolation where the stimulus presentation are graphs whose future values are absent, the 

visual representational momentum can be thought of as the observers’ mental representation of the 

continuation of a signal’s line formed from past points toward the future, reflected in eye movements toward 

that direction (Kimura 2021). There are studies that consider the representational momentum as an embodied 

mechanism of anticipating implied motion (Fischer et al. 2021; Khatin-Zadeh, Marmolejo-Ramos, and 

Trenholm 2022). This anticipation mechanism has been researched for both top-down and bottom-up aspects 

which suggest a strategic nature of perceptual anticipation (Mann et al. 2019). In the context of financial signal 

extrapolation, the level of implied motion would be the time-series trajectory up to the present moment and 

the observers’ visual attention allocation as part of the perceptual anticipation process, represents a perceptual 

strategy of whether (and how much) to focus visual attention on the visually optimistic compared to pessimistic 

representational momentums.  

Considering the previous directional contextualization of the future values of a graph as UP, DOWN or 

CONSTANT pattern, operationally, we define these three categories of dynamic extrapolative visual attention 

allocation strategies as visually optimistic, pessimistic and neutral representational momentums. Assuming 

only a binary bias, as to whether the underlying strategy of the financial analyst will be to allocate visual 

attention more towards optimistic or pessimistic representational momentum formations, we decided that the 

neutral representational momentum is irrelevant on operational level of analysis and as such we focus only on 

visually optimistic and pessimistic representational momentums. We suggest that it is this binary bias the one 

that determines the structure of graph’s observers’ strategy to address ambiguity in terms of previously built 

visually extrapolation experiences on behalf of trial and error principle. This strategic addressing during 

dynamic visual extrapolation does not imply conscious or intentionally pre-defined strategic plan. Instead, it 

implies a spontaneous, momentary visual search which reflects the visual search toward the “bright” and 

“dark” future where the latter two represent two different areas of interest (AOIs) on the stimulus presentation 

(the graph). As such, we formulated our first alternative hypothesis: 

H1. The mean frequency of S&P 500 signal will influence the spatial allocation of visual attention 

towards these two areas of interests of the extrapolated graph: “right corner up” (visually optimistic 

representational momentum) and “bottom right corner” (visually pessimistic representational 

momentum). 
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The effectiveness of such strategy can be evaluated by comparing the real future outcomes of the financial 

signal to those suggested by visual optimistic and pessimistic representational momentums of the graph 

observers. To address formally the above-mentioned ambiguity that observers face with when extrapolating a 

graph, we decided to integrate the framework of signal detection theory. According to signal detection theory, 

observers are faced with the task of differentiating the information-bearing patterns from the noise (random) 

distractions in a perceived signal (Wixted 2020). In the financial signal extrapolation context, visually 

optimistic and pessimistic representational momentums do contain a purpose, but that purpose not necessarily 

is information search, since future values are absent in the graph. So, in the right part of the graph does not 

exists any relevant object to look at, despite that spatial area of interest having a contextual relevance as 

“bright” or “dark” future. However, if we consider that each visual attention allocation toward one of these 

AOIs on the graph (indicated as “bright”/” dark” future) does count as a behavioral intention corresponding to 

visual optimistic and pessimistic representational momentums, we gain access to financial graph’s observers’ 

attitudes toward the financial future. Furthermore, behavior intentionality is recognized as a distinct category 

compared to the categories of investors’ behavior, cognition, and beliefs in the models of attitude formation 

(Bossaerts, Suzuki, and O’Doherty 2019). 

In context of signal detection theory, each of those representational momentums would represent either a Hit, 

Miss, Correct Rejection or False Alarm category, depending on whether the observers’ representational 

momentum is visually optimistic (rise) or pessimistic (decrease) and in coherence with the real future value of 

the graph (as in Figure 3). Basically, in terms of signal detection framework, we have a signal whose spectral 

properties influence the ability of the observer to extrapolate the signal (that is to become more strategically 

oriented by differentiating the information-bearing patterns from the noise present in the signal). This leads us 

to formulate the second and third alternative hypotheses: 

 

H2. Decrease of normalized mean frequencies of the S&P 500’s signal chunks will increase the visual 

extrapolation effectiveness of visually pessimistic representational momentum. 

 

H3. Increase of normalized mean frequencies of the S&P 500’s signal chunks will decrease the visual 

extrapolation effectiveness of visually optimistic representational momentum. 

 

2.  Methods 
 

We use secondary data generated by a pilot experimental research of ours on dynamic financial visual 

extrapolation. Preliminary data consist of 10 subjects who have been exposed to 12 graphs representing chunks 

of S&P 500’s signal on weekly time resolution (each graph containing data of consecutive 15 weeks chosen 

randomly from a time series S&P 500 signal of period 1986-2021, where the subjects had to extrapolate the 

price of 16th week). Subjects were asked to extrapolate the price of the graph they were observing for the 16th 

week solely on the graphical information that was provided to them for the previous price levels of 15 weeks.  

Each graph representation lasted for 10 seconds, and it was required from the subjects to perform a visual 

extrapolation while a video-based eye-tracking protocol was applied to measure their gazes. From 10 observers 

visually extrapolating 12 financial graphs (each observation lasting 10 seconds), in total 15671 saccades were 

recorded cross-sectionally. To isolate the visually optimistic and pessimistic representational momentums, we 

performed a classification by area of interest (AOIs) by applying a selection procedure of the coordinates (x, 

y) of the visual plane normalized as Left Top Corner (0,0) and Bottom Right Corner (1,1) of the graph displays 

as in Figure 1.   
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Figure 1. Heatmaps from the pilot experiment data with 10 subject extrapolating 12 randomly selected chunks of the 

S&P 500’s signal, generating in total 15761 eye saccades (as cross-sectional data points). 

 

To test for the role of spectral properties of S&P 500’s signal chunks on visually optimistic and pessimistic 

representational momentums, we performed a binary logistic regression. Whereas to evaluate the effectiveness 

of visual attention allocation strategy we performed a multinomial logistic regression analysis as to be able to 

estimate the proportion of times that visually optimistic and pessimistic representational momentums 

correspond to the true16th week price result of the chunks of S&P 500’s signal, based on S&P 500 signal’s 

spectral properties. There are four categories where we evaluate the effectiveness of the strategy. The 

optimistic representational momentum contains the category False Alarm (looking at the “bright” future 

incorrectly) and the category Hit (looking at the “bright” future correctly). Whereas the pessimistic 

representational momentum contains the category Correct Rejection (looking at the “dark” future correctly) 

and the category Miss (looking at the “dark” future incorrectly). These categories are represented in Figure 3b.  

 

a) 

  Response 

  NO YES 

T
ri

a
l 

ty
p

e 

NOISE Correct rejection  

False 

alarm 

SIGNAL Miss Hit  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. a) The general matrix representation of signal detection framework  

b) Adapted matrix representation of visual attention allocation through the signal detection framework 
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3. Results 

3.1 Binary logistic regression results: The majority of the total 15671 saccades allocated towards the “future”, 

are allocated on the top-right corner of the graph (65.5 %), which means that observers during a visual financial 

extrapolation task do have approximately two times more of a tendency for visually optimistic representational 

momentum compared to the tendency for pessimistic representational momentum (Table 4).  

The Omnibus Tests of Model Coefficients reveals that a model’s general fit exists. The significant result 

(p<0.05) suggests that the model of visually optimistic and pessimistic representational momentums, estimated 

with the normalized mean frequencies of the S&P 500 signal’s chunks, is better than the null model, with a 

Chi-square of 294.5 and p-value of 0.000 (Table 5). By this, we can conclude that the normalized mean 

frequencies of the S&P 500 signal’s chunks do influence the of visually optimistic and pessimistic 

representational momentums’ variation, thus we reject the first null hypothesis. This can be seen also with the 

analysis of the logistic regression model coefficients. The normalized mean frequency of S&P 500’s signal 

has a positive effect (196.84) on probability of visually optimistic representational momentum. When the 

normalized mean frequency of S&P 500’s signal increases for one unit, the probability that the observer of the 

financial graph will allocate her visual attention more towards the “bright” financial future is increased for 3 

times (Table 5). The next step of our analysis was to evaluate the quality of the model’s fit. The – 2 log 

likelihood of the estimated model by maximum likelihood, converged after 4 iterations and it is reduced from 

20186.48 (in the null model) to 19895.87 in the model which considers the normalized mean frequency of the 

S&P 500’s signal. This is an additional reassurance that our binary logistic model has a better fit than the null 

model.  

To measure the model’s predictive capacity, we analyzed the classification table or as it is named also as 

“confusion matrix”. The classification table used the conventional standard of 50% when allocating cases as 

visually optimistic or pessimistic representational momentums, that is, if probability for visually optimistic 

representational momentum on a particular level of S&P 500’s signal’s mean frequency was p>0.5, the 

classification appoints the observers’ saccade as a looking towards the “bright” financial future, and vice versa, 

if p<0.5 it appoints the observers’ saccade as looking toward the “dark” financial future. The accuracy of our 

model is measured as the proportion of true positive and negative cases, which results to be 68.1%. The 

predictive power of our model is considerably higher for visually optimistic representational momentum with 

95.6% correct predictions, compared to the predictive power for visually pessimistic representational 

momentum with 15.8% correct predictions (Table 8). 

In summary, our binary logistic regression model suggests that the more visually “smashed” (or dense) the 

graph is (due to higher normalized mean frequency of the signal or due to higher sampling rate of the signal), 

the greater is the tendency of the observer to allocate visual attention towards the upper right corner of the 

graph being visually extrapolated. Interpreted in an additional perspective, the higher is the sampling frequency 

of a financial signal which is being visually extrapolated, the higher becomes the observers’ bias of looking 

towards the “bright” financial future. To understand whether the latter bias is counterproductive or not in terms 

of the success rate of matching the visually representational momentums with the real future outcome, we 

further discuss the results of our second model, namely the multinomial logistic regression model of visual 

attention allocation strategy builds upon the spectral properties of the S&P 500’s signal. 
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Table 4. Frequency distribution for the dependent variable Y (visually representational momentum) 

 
  

Table 5. Omnibus Tests of Model Coefficients 

 
 

Table 6. Logistic regression model coefficients 

 
 

Table 7. Model goodness of fit measures 

 
 

Table 8. Classification table of the binary logistic regression model 
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3.2. Multinomial logistic regression results:From the total of 15671 saccades build up from 10 observers trying 

to visually extrapolate 12 different financial graphs (different in spectral properties), 45.7% are Hit responses 

and 12.8% are Correct Rejection responses which in total is 58.5% (45.7% + 12.8%) of successful visual 

extrapolation cases derived only from the visually optimistic and pessimistic representational momentums 

(observed through saccades patterns as behavioral intention not as a reported extrapolation). This indicates the 

dominance of visually optimistic over the pessimistic representational momentum, but whose shift from 

optimistic towards pessimistic representational momentum represents an interesting successful visual 

extrapolation mechanism.  

The multinomial logistic regression model for estimating the effectiveness of visual attention allocation 

strategy, regressed against the normalized mean frequency of the S&P 500’s signal was statistically significant 

(Chi-square 20308.107; p<0001 (Table 10 and Table11)). The Miss category was used as a reference category 

in the multinomial logistic regression model. Due to the inability of the statistical program to compute the 

exponential value of the model coefficients, we were unable to interpret the scale of effect in addition to its 

polarity. Results show a negative effect of the normalized mean frequency of the S&P 500’s signal on 

effectiveness categories Correct Rejection and False Alarm while a positive effect on the effectiveness 

category of Hit. This means that increase of normalized mean frequency of the S&P 500’s signal decreases 

both, the probability of Correct Rejection which corresponds to the increase of the extrapolation effectiveness 

of visually pessimistic representational momentum, and it increases the probability of False Alarm which 

corresponds to the decrease of the extrapolation effectiveness of visually optimistic representational 

momentum.  

 
Table 9. Frequency distribution for the dependent variables indicating the extrapolation effectiveness of visual representational 

momentums 

 

 
 

Table 10. Results of the multinomial logistic regression analysis 

 
 

 



 

122 
 

Table 11. a) Multinomial model fitting information 

 
 

b) Likelihood ratio test 

 
 

Table 12. a) Classification table for multinomial logistic regression model 

 
 

b) The role of normalized mean frequencies of S&P 500’s signal chunks on the effectiveness of visual attention allocation 

strategy 
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From Table 12a) we constructed the Table 12b) in the framework of signal detection theory. We can see that 

visual attention allocation strategy as a behavioral marker for the success rate of visual representational 

momentums during an extrapolation task is considerably more biased (thus less effective) for the pessimistic 

representational momentum than for the optimistic representational momentum, both for the increase and 

decrease of the S&P 500’s signal.  

 

4. Discussion and conclusions 

Since its discovery (Freyd and Finke 1984), the representational momentum has achieved an important place 

in perceptual motion studies. Its model formation capabilities through an internalized dynamic perceptual 

system, are known even to follow the basic principles of Newtonian physics (Freyd 1987). As such, the role 

of the representational momentum as an implied prediction mechanism of a non-apparent motion, is offering 

to the observer the capability to extrapolate additional mentalized frames of the directionality of such non-

apparent motion. As our results indicate, in terms of financial graphs, mentalizing the non-apparent motion of 

a signal through a visual representational momentum offers the investors the capability to mentalize the future 

directionality of the financial signal. Yet, the effectiveness of such an evolutionary mechanism of visual 

attention and visual representational momentum remains subject of change and upgrade through a prediction 

error logic when trying to isolate and to learn the decomposed parts of a random signal such as the trend, 

seasonality, and noise. 

We conclude that during visual extrapolation task, the frequency resolution of the financial signal creates a 

behavioral intention and a tendency for the observer to look towards the “bright” financial future (this being 

defined as AOI of the right upper corner of graph) through a visually optimistic representational momentum, 

that is, without having any visual cue to motivate this tendency. This means that during financial graph 

extrapolation, the observers’ internal mentalization of the financial future, reflects itself behaviorally as an 

intention through visual attention allocation. Moreover, this emphasizes the strategic nature of visual 

perceptual anticipation financial analysts have. With the estimation of the effectiveness of such evolutionary 

derived mechanism through the framework of signal detection theory, we conclude that such mechanism is 

relatively effective in extrapolating visually the financial signal in terms of pessimistic visual representation 

momentums but not as effective in optimistic visual representation momentums.  Furthermore, this is statistical 

evidence that visual financial graph extrapolation is not a random visual search, instead it has a behavior 

intentionality component in it, because it builds up upon the past spectral properties of the financial signal. 
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