
207 

 

UDC: 004.72:004.774 

Original scientific paper 

A COMPREHENSIVE ANALYSIS OF ARCHITECTURAL PATTERNS 

IN ASP.NET CORE WEB APPLICATION DEVELOPMENT 

Florinë MUSHICA1, Agon MEMETI1* 

(1) University of Tetova, Faculty of Natural Sciences and Mathematics, Tetovo; (2) UBT College, Prishtina  

North Macedonia 

* Corresponding Author, e-mail: agon.memeti@unite.edu.mk 

 

 

Abstract 

 

The landscape of web application development has undergone significant transformations since the inception 

of the World Wide Web. In the contemporary landscape of web development, a multitude of design patterns, 

frameworks, and programming languages are employed to construct web applications, adapting to their diverse 

levels of complexity. Model-View-Controller (MVC) stands out as a widely embraced design pattern in the 

construction of web applications. This paper's primary goal is to provide a comprehensive elucidation of the 

features and fundamental components intrinsic to the MVC architectural pattern. Through practical examples 

and in-depth analysis, readers will gain valuable insights into the nuances of MVC, empowering them to harness 

its capabilities for robust and effective web application development. 

 

Keywords: MVC, model, view, ASP.NET, controller, architecture. 

 

1. Introduction 

 

Web applications today have become essential components that cover many fields such as 

education, art, entertainment, business, and many others. With the rapid progress of this 

paradigm, the ways in which we use and interact with web applications have changed a lot. In 

such a scenario, the development of web applications has resulted in a continuous expansion of 

the complex and dynamic demands of users. Therefore, the efficiency of web application 

development is very critical. Web developers today face an even greater challenge in choosing 

the right technology to accommodate all user requests. 

A good practice during development is to divide the application's structure into components or 

layers and make the development modular. This combination results in a scaled and very 

flexible architecture for web applications. Several design models offer this type of solution as 

templates for best practices for the development of web applications and real-world systems. 

Nowadays, the focus is on the MVC model, which has become very popular for designing 

applications due to its structural characteristics and adaptation to programming languages. Its 

main characteristic is its logical model, view, and controller components, which deal with 

specific aspects of web application development. 

The objective of this study is to cover the architecture of web applications, more precisely the 

MVC architectural pattern, and explain its functionalities on a practical basis through the 

development of an ASP.NET core web application. The application development process is 

supported by the following systems, technologies, and frameworks: Visual Studio (IDE), 

ASP.NET core MVC, Cionalities on a practical basis through the development of an ASP.NET 

core web application. The application development process is supported by the following 

systems, technologies, and frameworks: Visual Studio (IDE), ASP.NET core MVC, C#, and 

several Microsoft packages such as EntityFrameworkCore, SQLServer, Tools, and 

AspNetCore. Identity. 

https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2816  

mailto:agon.memeti@unite.edu.mk
https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2816


208 

 

Furthermore, this paper is organized as follows:  

- Chapter 2 State of the Art, which basically has a review of literature and published articles 

on the topic,  

- Chapter 3 provides an overview of Web application design and development,  

- Chapter 4 offers website UI design, the latter followed by conclusions. 

 

2. State of the Art 

 

According to several authors [1], design models are very important elements in the development 

of web and mobile applications. Over the years, web applications have evolved along with their 

complexity; for this reason, these problems must be addressed through the proper selection of 

architectural models and frameworks. 

MVC (Model-View-Controller) architecture, as a result of the facilitating structure that it offers 

developers, is making it widely used for the development of web applications on the Internet. 

This strict decomposition of applications into three components: model, view, and controller 

are making the applications more scalable, efficient, and maintainable. 

According to Patel and Pancholi [2], this division of this architectural model is made to separate 

the way of presentation and acceptance of information by the user from its internal 

representations. It also enables parallel development and efficient code reuse. Background 

information: The MVC architecture model was presented by the computer scientist Trygve 

Mikkjel Heyerdahl Reenskaug for the first time in 1979 [3]. His goal was to come up with a 

model that divided a complex application into smaller and more manageable components. This 

model was first used in the small talk programming language. The original designation for this 

model was Model-View-Editor, but later it was designated Model-View-Controller. In its 

beginnings, specifically in the 1980s and 1990s, the MVC model was mainly used for the 

development of desktop applications. But from the end of the 1990s until today, the MVC model 

has been a very popular choice within web applications. Each component of the architecture is 

intended to address specific aspects of web application development. In the following section, 

we have the description of the components according to several authors [4] of the MVC 

architectural pattern: model, view, and controller. 

 

The model component is the part of the application that represents all the logic of the data used 

in the application with which the user works. It corresponds to the data that is transferred 

between the view and controller components, as well as any other data related to the business 

logic. Since the controller component cannot interact with the database, the model component 

responds to every request of the controller. Every operation within the application, such as 

adding and retrieving data, that requires the presence of the database is managed by the model. 

The view component is responsible for generating the user interface of the application. They 

are created from the data that the model component possesses. This data cannot be obtained 

directly from the model but rather through the controller component. So, the view component 

interacts only with the controller.  

The controller component is responsible for handling events and acts as an intermediary 

between the view and model components. Responsible for processing logic and input requests, 

manipulates data through the model component, and then interacts with the view component to 

give the result of the right view that will be displayed to the user according to his requests. 



209 

 

 
Figure 1. MVC architecture: Data flow [5] 

 

MVC is used in several popular web frameworks, including ASP.NET, Angular, Laravel, Ruby, 

etc. ASP.NET Core is a high-performance, cross-platform, open-source framework for building 

cloud-optimized, modern web applications. ASP.NET Core apps are modular and lightweight 

with built-in support for dependency injection, enabling greater maintainability and testability. 

Combined with MVC, ASP.NET Core is a powerful framework that supports building modern 

web APIs in addition to view-based apps [6]. 

So, as a conclusion to this chapter, when should we apply the MVC pattern architecture? When 

we are dealing with applications that have a very serious and complex interaction on the part of 

the client, it is not enough just to use JavaScript. As for the cases where the complexity leans 

convincingly on the server side and there is very little communication on the client side, then 

the use of other development models comes into play. Some characteristics that help us 

understand when we should use the MVC architecture for developing applications are listed 

below [7]: 

- When the same type of data is distributed in different ways on a single page.  

- Data manipulation is generally performed by the client and not by the server.  

- When the application has functionalities that must be realized without reloading the page 

completely.  

- Applications need asynchronous communication on the backend side etc. 

 

3. Web Application Design and Development 

 

In this research study, a web application has been developed using the MVC architecture, 

through which the basic concepts and logic of this model will be practically clarified. The web 

application "Foreign Languages Academy" refers to the sale and purchase of the product (a 

language course) online. The application can be considered a B2C app since the academy that 

offers courses can be considered a business, while a customer is considered a user (student) who 

selects one or more products (courses) that are offered. 

The web application has implemented the following actions, which are performed by different 

actors depending on the role: 

1. User login or registration 

2. The user can search for the product (language course) in which he is interested. 

3. The user can see the details of the course (language, level, professor, assistant, 

description, class, price, start date, end date, and status: coming up, expired, available). 

4. The user can add one or more products to the basket and purchase them later. 

5. The user can view his shopping cart, add or delete courses, and see the total price before 

the checkout process. 

6. The user with the Admin role also logs into the system and can view orders 

(transactions) as well as users of the entire web application. 



210 

 

7. The administrator manages the system; he can add, edit, and delete languages, 

professors, assistants, and classes. 

So, the Web application is divided into two functionalities: user and admin, which vary in some 

operations that are visible depending on the role at the moment of identification. The second 

component, the admin, mainly includes the application of CRUD (create, read, update, and 

delete) operations on the application data. 

Development: The application was developed using the ASP.NET Core MVC template. Views 

have been developed using the Razor Engine, the controllers are developed using C# classes 

(*.cs), and models use entities that are also C# classes. 

Features: ASP.NET Core MVC offers many features that are useful for building web-based 

APIs and apps. Some of the features of this architecture that have been applied to the project 

are worth noting, such as model binding, dependency injection, routing, authorization, etc. 

Model binding in ASP.NET MVC transforms client request data into objects that the 

controller can handle. As a result, the data is passed as parameters to its action methods, so 

the controller logic does not have to do the job of determining the incoming request data. 

Model validation in ASP.NET Core is done by decorating your model objects with data 

annotation validation attributes. The validation attributes are checked on the client side 

before values are sent to the server. 

Dependency Injection: in ASP.NET Core, controllers can request required services through 

their constructors. 

 

Application models overview  

 

A model is a c sharp class that represents a table in the SQL server and defines the data relations. 

Initial models of the application are: professor, assistant, language and class, which represent 

database tables. 

Between the language and professor model, we come to the use of join tables (models) because 

of the relationship between them (many to many). So, we split the many-to-many relationship 

into two one-to-many relationships by adding the Professors_Languages join table. 

 

 
Figure 2. Database schema with initial models 

 

After we have added initial models to the web app, we have to add a DB context file, which 

serves as a translator between the application model and the database. So for the SQL database 

to understand the C# code and vice versa, we must have a file in between that understands both 

C# and SQL. 



211 

 

 
Figure 3. DBContext file 

For the many-to-many relationship, we must add some instructions to the dbContext file and 

define the names of the tables.  

protected override void OnModelCreating(ModelBuilder modelBuilder)  

{  

modelBuilder.Entity().HasKey(pl => new  

{  

pl.ProfessorId,  

pl.LanguageId  

});  

modelBuilder.Entity().HasOne(l => l.Language).WithMany(pl => 

pl.Professors_Languages).HasForeignKey(l => l.LanguageId); 

modelBuilder.Entity().HasOne(l => l.Professor).WithMany(pl => 

pl.Professors_Languages).HasForeignKey(l => l.ProfessorId);  

base.OnModelCreating(modelBuilder);  

}  

public DbSet Professors { get; set; }  

public DbSet Languages { get; set; }  

public DbSet Professors_Languages { get; set; }  

public DbSet Classes { get; set; }  

public DbSet Assistants { get; set; }  

//Orders related tables  

public DbSet Orders { get; set; }  

public DbSet OrderItems { get; set; }  

public DbSet ShoppingCartItems { get; set; }  

}  

 

In addition to the initial models, the web application also contains other models, such as: Order, 

OrderItem, ShoppingCartItem, and ApplicationUser, which play an important role in the proper 

functioning of the application. 

 
Figure 4. Application models 



212 

 

SQL Server configuration  

 

After we have defined the relationships between the models and completed the AppDbCongtext 

file, the SQL server is configured to be the default storage of the application data. 

 
Figure 5. Database configuration 

//DbContext configuration  

services.AddDbContext(options => 

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnectionString")));  

Definition of data storage in startup.cs.  

 

Database: synchronizing model changes with the database In EntityFramework Core, the 

synchronization of model changes with the database is done by migration. Combining the 

AppDbContext file with the templates generates a C# class that reflects these changes. After 

adding the necessary migrations and updating the database, the latter is populated with the 

necessary data for the operation of the application. After these steps, the database is ready to be 

seeded with data. 



213 

 

 
Figure 6. Database diagram 

 

Application controllers overview 

 

A controller in ASP.Net Core is a C# class that is responsible for controlling how a user interacts 

with an MVC application and handles its requests. The created application contains a controller 

for each feature. Each controller contains methods that are used for different functionalities 

within the application's features. Some features can only be seen by the administrator. The MVC 

controllers of the web application are shown in the figure below. 

 
Figure 7. Application controllers 

 

Application views overview 

 

The view presents the user interface, in our case the admin user interface and the user (student) 

interface. In the view, in addition to the html code, we also have the definition of the type of 

data used in that particular view and c# code. Since in the application certain features can only 

be seen by the admin, the application is coded in such a way that some parts of the UI change 

when an if statement is fulfilled. 



214 

 

@if (User.Identity.IsAuthenticated && User.IsInRole("Admin")){ code required for 

certain features here… } 

 
Figure 8. Application views 

 

A good practice when developing applications is to use services so that the code to receive the 

data is not written in the controllers. So, in the application, we used services that interact with 

the database using EntityFramework Core, which are injected into the controller. 

 

 
Figure 9. Application services 

 

In cases where the same methods are used for several functionalities (add, update, delete, read), 

generic solutions are used. In this web application, the administrator performs several 

operations that use the same methods, such as adding, updating, deleting, getting professors, 

assistants, languages, etc., which are implemented in a separate file that is inherited by certain 

services and has as a parameter the necessary model. 

 

4. Web UI Design 

 

As mentioned before, the UI changes in certain views depending on the role of the user, which 

can be user or admin.  

The initial view looks like the following, if we click the add to cart button, it redirects us to the 

login page. 



215 

 

 
Figure 10. Website UI design 

In the following figure, we see the login page and the case when we give the wrong data. 

 
Figure 11. Website UI design-Login 

Register page:  

1). the case when the password does not match,  

2). the case when the account is created successfully,  

3) error message when input data is missing. 



216 

 

 
Figure 12. Website UI design-Register 

Website UI when the role is identified as USER.  

1). the initial view after logging in,  

2). the view of the shopping cart after choosing the courses,  

3). the view after clicking the show details button 

 

 
Figure 13. Website UI design-User Role 

 

Website UI when the role is identified as ADMIN. 1). The view after pressing account/users, 

2). Dropdown items that can be managed by the admin, 3). the professors view. 



217 

 

 
Figure 14. Website UI design - Admin Role 

 

In the following figure, some examples of performing CRUD operations within the web 

application are documented. These operations can be performed on professors, assistants, 

classes, and languages by the admin. 

 

 
Figure 15. Website UI design-CRUD operations 

 

5. Conclusions 

 

This paper presents an overview of the MVC architectural pattern through the development of 

an ASP.NET Core MVC web application, identifying and highlighting some of the most 

important concepts and features on a practical basis. MVC is a well-known three-layered 

(model, view, and controller) architectural pattern that has simplified the development process 



218 

 

of web applications. It reduces the complexity of the application, and in combination with 

ASP.NET Core, MVC has proven to offer many features that are useful for building APIs and 

web-based applications. 

In conclusion, the use of the MVC architecture allowed us to build a scalable and modular 

application that separates the concerns into its components. Separation of concerns makes 

application testing easier as the relationship between application components is coherent and 

clear. Also, with this feature, the MVC architecture introduces us to the concept of parallel 

development as it divides the logic of the application. This project demonstrates the benefits of 

using design patterns in web development and provides a solid foundation for further 

development and enhancements in systems with similar functionalities. 

 

References 
 

[1] R. Chaturvedi, S. V. Chande and A. Sharma, "Evaluation and Refinement of MVC Web 

Application," Journal of Information and Computational Science, 2021. 

[2] S. J. Patel and P. D. Pancholi, "Implementation and Comparison of MVC Model in ASP.net 

Framework," IJRAR- International Journal of Research and Analytical Reviews, pp. 827- 835, 2018.  

[3] S. Singh, “MVC Framework: A Modern Web Application Development,” International Research 

Journal of Engineering and Technology (IRJET), vol.VII, no.01, pp.51-55,2020. 

[4] A. Majeed and I. Rauf, “MVC Architecture: A Detailed Insight to the Modern Web Applications 

Development,” Peer Review Journal of Solar & Photoenergy Systems, vol.I, no. 01, pp. 1-7, 2018 

[5] D.-P. Pop and A. Altar, "Designing an MVC Model for Rapid Web Application Development," 24th 

DAAAM International Symposium on Intelligent Manufacturing and Automation, p. 1172 – 1179, 

2014 

[6] “InterviewBit,” 30 May 2022, [Online]. Available:  https://www.interviewbit.com/blog 

/mvcarchitecture/ . [Accessed February 2023]. 

[7] “Microsoft,” 21 February 2023, [Online]. Available: https://learn.microsoft.com/enus/dotnet/ 

architecture/modern-web-apps-azure/develop-asp-net-core-mvc-apps. [Accessed 26 February 

2023]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.interviewbit.com/blog%20/mvcarchitecture/
https://www.interviewbit.com/blog%20/mvcarchitecture/
https://learn.microsoft.com/enus/dotnet/%20architecture/modern-web-apps-azure/develop-asp-net-core-mvc-apps
https://learn.microsoft.com/enus/dotnet/%20architecture/modern-web-apps-azure/develop-asp-net-core-mvc-apps

