
228

UDC: 004.777.051-047.44

Review article

COMPARATIVE ANALYSIS OF SOAP AND REST APIs: SYSTEMATIC

REVIEW AND PERFORMANCE EVALUATION WITH PYTHON

Enes BAJRAMI 1*, Agon MEMETI 2, Florim IDRIZI 2, Ermira MEMETI 1,2

1*Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
2Faculty of Mathematical and Natural Science, University of Tetova

*Corresponding author e-mail: enes.bajrami@students.finki.ukim.mk

Abstract

In this paper, further information regarding two of the most popular web service architectures, which are

Representational State Transfer (REST) and Simple Object Access Protocol (SOAP), is presented. For this, we

adopted the PRISMA strategy which helped in identifying studies relevant to the chosen questions. In order to

conduct the analysis of REST and SOAP, we formulated three such questions. After applying the other

inclusion criteria and completion of scoring with the use of PRISMA flow chart, twelve studies were identified

which met the inclusion criteria. In the process of analysis and interpretation of the selected literature, we

examined many aspects of REST and SOAP relative to their performance, scalability and interoperability.

Therefore, it should be understood that the goal of this particular work will be to help further this particular

discussion on how likely such web service technologies will prove to be in practice. We also performed a local

experiment comparing the SOAP and REST APIs in terms of performance, and thus providing additional

experimental data about these technologies concerning response time and system behavior under controlled

conditions.

Keywords: SOAP, REST, Web Service, Python, API

1. Introduction

Web services can be regarded as a number of applications which in unison carry out a number

of operations yet are not related to one another. In this regard, there are online software

application which themselves give a description, which are easy to get and easy to use with no

effort [1] [2] [3]. It presents a common way of bringing together different software systems

found on the world wide web and the communication between them [4] [5] [6]. In layman's

terms, it can be said that web service is just aggregation of different software components that

accept remote requests and return some data or services. These components are applied in

developing service-oriented architecture [7] [8] [9] [10] [11] [12] approaches that transforms

the internet from just a store of information to a useful resource where activities can be carried

out and services accessed [13] [14]. The technology of web services also provides a cheaper

and easier way for Software Engineers to efficiently develop and deploy web applications

quickly. Software Engineers are able to combine their developed applications with peripheral

web service components to accomplish new business processes without much difficulty [15].

Deploying web services has two recognized methodological approaches. The first is SOAP web

services and the second is the REST web services [16]. SOAP is the first web service protocol

which was used to send data in XML format over different protocols such as HTTP, SMTP and

FTP [17]. REST is however a much simpler service-oriented architecture which works over

HTTP and supports the transmission of various document formats such as XML, HTML, JSON

and plain text [18] [19]. It does not matter the platform a web application is built upon or hosted;

every web application is capable of utilizing web services. This time it is because of the fact

that it is presented in a manner which can be understood by the computers as a web service

https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2818

https://orcid.org/0009-0005-7960-3959
https://orcid.org/0000-0002-6824-3856
https://orcid.org/0000-0001-7514-3282
https://orcid.org/0000-0002-2526-8690
https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2818

229

interface consequently [20]. This interface provides access to the functional capabilities of the

web service by integrating how other programs are able to use its features. Creating web

services resembles creating other computer systems, however, there are instances when bad

designs result into developing web services that are not usable [21]. This can make it hard to

understand what the service does and how to use it, leading to complicated and low-quality

interfaces. As a result, the web service might not get used much and could be abandoned [22].

2. The State of Art

SOAP and REST are two well-known techniques that are employed in the creation of web

services. SOAP (Simple Object Access Protocol) is meant to create a standard format for

protocols based on XML messages, whereas REST (Representational State Transfer) depends

more on non-session-based communication over the Internet which broadly employs the use of

either JSON or XML to pass data across. Since SOAP presents a rigid characterized interface

structure with strong typing, it is used for a higher level of integration for enterprises.

Nevertheless, it is deemed not as fast since the size of the messages may be too large [23]. On

the contrary, REST, makes use of sever/client architecture that is light and flexible doing away

with any rigidity that is deemed uneconomical for mobile applications and web applications.

Each of the two technologies wouldn't be complete without a specification for security because

they provide online resources. Thus, that is what we can say in return, SOAP supports a range

of features which include the ability to encrypt and authenticate messages, while REST mostly

uses HTTPS and other third-part communication protocols like OAuth [24]. Both take

advantage of the available tools with SOAP being the preferred choice for integration in the

enterprise and REST for web API and microservice development. The factors affecting the

selection process include performance optimization needs, current technology available, and

how the code developers’ think [25].

Table 1: Comparison of SOAP and REST based Web Services

Feature SOAP REST

Technology Type Well-established traditional

technology

Newer technology

compared to SOAP

Enterprise Usage Attractive in enterprises and B2B

scenarios

Enterprise-ready, with

successful

implementations

Client-Server Interaction Tightly coupled Loosely coupled

Implementation Established development kits Interface flexibility

Changing Services Complicated code changes on

client side

No change in client-side

code required

Payload Heavier payloads compared to

REST

Lightweight for efficient

data transfer

Binary Attachments Requires parsing Supports all data types

directly

Wireless Infrastructure Not very friendly Wireless infrastructure-

friendly

Returned Data Primarily XML data Flexibility in the type of

data returned

Bandwidth Consumption Consumes more bandwidth Consumes less

bandwidth

Request Type Uses POST and complex XML Consumed using simple

GET requests

HTTP-based APIs Custom response schemas per

object

Standardized URIs and

HTTP verbs

230

Language & Platform Agnostic Yes Yes

Distributed Computing

Environment

Designed for distributed

environments

Assumes point-to-point

communication

Development Complexity Harder, requires specific tools Simpler development

Security Ensured through WS-Security Relies on HTTP(S) for

security mechanisms

Standards & Tooling Support Prevailing standard with better

support

Lack of support for

certain standards

The first of the two positions in table 1 against the content says SOAP components against some

of the components, which are of the REST Professionally Recommended. SOAP: Simple Object

Access Protocol is a widely used protocol in the industry, however; REST: Representational

State Transfer is just a modified version of the word SOAP. This comparison lays out areas of

consideration with regards to these protocols. As regards usage within the enterprise, it is still

most favorable for a lot of enterprises, particularly B2B settings with the development kits

already in place and so many executed stuck up with tight client-server interactivity. In contrast,

the concept of REST is already accepted as enterprise appropriate with practical applications in

many respects, and allowing for flexibility in the design and looser constraints on the links. A

major differentiating factor regards to the difficulty of implementation for development, SOAP

applications would require heavy customization in most cases at the client end in code, while

REST through its design eases changes in development removing the need to change any code.

In stable messages, however, REST is somewhat heavier than SOAP transmit. In addition, there

are also variations in the manner in which the data obtained from the server is processed after a

query. SOAP gives back tickets in XML and REST gets back a typical data representation

representing primarily JSON with a variation to what media content is delivered to a client.

Ripple is an example of a SOAP based platform which swallows a huge bandwidth whose

payload usage is more than that of REST which is rather less. Though Bandwidth usage for

SOAP and REST also paints a picture of contrast. More so, the type and methods used in

realization of the SOAP and REST will greatly affect the security usage. SOAP obliterates outer

reach of security using the WS-Security standards and REST employs several applications such

as HHTP(S) secure measures against threats. In spite of the web service approaches in

deploying SOAP, Rest means some standards are not in the service of Rest that makes the

service more complicated.

3. Related Work

Since there exists quite an extensive amount of literature on the two interfaces, it is safe to

observe, the primary objective is to go back and do a literature review and try to uncover the

main ideas and findings. In paper [26] the authors report on scoping review of web service

antipatterns found in web service interface design. This analysis revealed the existence of

twenty-three anti-patterns in the SOAP web service technologies, while only twelve were

evident in restful technologies with very few of them common to the two. This is very beneficial

to the developers of web services so that those antipatterns can be avoided and therefore

reusable web services of superior quality are made. Such future studies are also intended to fight

against the exposed antipatterns in the next works. In paper [27] the authors perform several

ranking metrics on them and detailed the service-oriented architectures. They conduct a

systematic literature review and use a conceptual comparison against the SOAP and REST

models. Nevertheless, such conclusions do not lead to a definitive answer as to which strategy

is more efficient in system integration. In this regard, the authors believe that which variant of

SOAP or REST has to be implemented is to be determined in view of a comprehensive analysis

including and extending to both functional and non-functional properties. For instance, they

231

assert that REST is better suited for the integration of lower-end information systems but not so

vice versa for SOAP which is said to be more applicable in advanced systems with additional

factors such are the security policies of WS-Security and other related standards. In the article,

referring to systems [28] authors presented the systematic literature review that they intended

to conduct when investigating its need to present the results of the research held on web services

security. The SCT found out that although secure coding practices could be among the best

practices applied in practice, this is not quite the case in practice, and particularly for REST-

based web services. It is believed that web services should allow for non-complex data

migration from one application to another application or service. Previously it made sense to

say SOAP was used in an abstract manner. However, where there is the mention of REST today,

there is the great elimination of elaborating which all peripheral theory is a spinning of shackles

to unwritten rules and Enlightenment. Recent studies have drawn attention to the fact that these

fears within RESTful web services are justified. Now, with the advancement in web service

technology, the compromising approaches towards web services are also advancing. This

renders studies on the security of RESTful web services crucial to prevent such forms of the

attack. The cryptography that is often implemented during the development stage can also

safeguard the system from data exploitation. Certainly, the path is evident, the only hurdle

remaining is how to combine the most optimum means of efficient authentication and one or

several encryption techniques to facilitate smooth and secure exchanging of information. In this

paper [29] the authors performed a survey on the research done on RESTful services close to

SOAP services and later on proceeded to the research of the services. Such papers have tend to

be categorized into three main sub-groups: interaction of SOAP and RESTful architecture in

different aspects, representation and realization only within REST. In terms of the first ebook

and subsequent papers, they attempted to deal with these problems of consolidation of various

research domains aiming at service integration including attempting to understand some papers

in the first group dealing with SOAP – REST provisioning. However, they did not consider

whether these types these methods were coming into conflict with the properties of REST

methodology. In fact, their systematic review became problematic in the use of the first group

methods in which REST and SOAP were combined with no clear rationale, a choice evidently

made by the authors. In paper [30] relatively recent literature has been examined for a number

of stereotypes contained in software, although starting approaches have been also reviewed. As

take their identification strategies are sometimes regarded as bad smells in software as these are

just some. This paper's purpose is to mainly relate to the problem specification and mostly

patterns' detection in contemporary software. Instead, it does address quite a few, but not the

issues connected with a specific subgeneration of modern software – RESTful software. It

addresses both primitive and advanced software. The subject of the study includes the following

questions, how the patterns are recognized, how they have been transformed, which patterns are

harmful for some class of systems, how relation of different systems is with these patterns, and

what work has been reported in the direction. These unions are helpful for our paper too as they

are solutions of employing most of the recent software technology including SOAP, REST and

SCA. It describes six effective approaches for figuring out bad software patterns which can be

applied more or less in the current software systems. Further, it highlights five elements that

have propelled these approaches. When it comes to modern applications like SOAP or REST,

focus can only be made regarding bad patterns to certain extent because of the need to protect

the secrets of such systems- their functionalities. It has been found out, however, that it has not

been possible to recognize many low-grade patterns in the contemporary released software with

respect to its software primitive; the investigation had revealed only 19. Most people seem to

be skeptical on some levels basing their argument on poor patterns of a software meant for one

application in relation to the same software meant for another application. In as much as all

those patterns that should be in place were not there, the analysis in some parts did reveal some

232

efforts that have been made in order to trace the bad patterns, but virtually no advancement has

been made in allowing things to move forward by either rectifying them or preventing them

from returning.

4. Research Methodology

In the next section, we provide a summary on two articles; the first article compares the two

Web Services and the second one discusses SOA solutions and the direction of SOA evolution.

Research papers were searched on this subject with the date range between January 2018 and

March 2024. At our paper we have used PRISMA for a guideline for reporting the protocol of

a systematic review. It offers a formal framework in order to assist the reviewers to stipulate

the aims, methodology and hypotheses of conducting a review in a bid to prevent unnecessary

reviews from being conducted [31]. We have elaborated the research phases on the English

section through PRISMA flowchart.

Figure 1: Flowchart of the PRISMA selection process

4.1.Research Questions: Even before beginning the search for articles on web services security,

we put our heads together and thought out a few questions that would serve as our look-out.

These will make it easier for us to sift through articles and find the appropriate ones in the issue.

A few of the questions that we have to address in our search include:

 RQ1: What are the current adoption trends of SOAP and REST in modern web services,

and what challenges do organizations face during their implementation?

 RQ2: How do SOAP and REST perform in terms of efficiency, latency, and scalability

within microservices architectures under varying workloads and deployment scenarios?

233

 RQ3: What are the security mechanisms, authentication protocols, and vulnerabilities

associated with SOAP and REST APIs in cloud computing environments, and how do

cloud-specific factors influence their security posture?

Many papers were read in order to obtain answers to our questions, then the most important

ones were selected for intense scrutiny.

4.2.Review Parameters: For our paper, we used keywords like “SOAP”, “REST”, “Web

Services” to find similar stuff. Keywords are just fancy words we type into digital libraries to

search for what we need.
Table 2: Keyword’s parameters

 Keyword Operator

SOAP

REST

Web Services

OR

OR

Such keywords processed the new innovations or revise tools developed against PRISMA

methodology as seen in figure 1, which was used for selection, processing and collection of

articles.

4.3.Inclusion and Exclusion Criteria: The criteria of inclusion and exclusion for evaluating the

relevant studies are as follows:

Inclusion Criteria:

a) Only studies are written in English that were relevant to SOAP VS REST;

b) Studies where experiments or similar methods were included.

Exclusion Criteria:

a) Research articles not published before 2018;

b) Studies that review others’ SOAP VS REST - related research work;

5. Results

A flowchart has been created in order to present the results of the search more clearly. Each of

the studies was reviewed thoroughly in order to identify the most relevant information and

identify the trends, with the most important data presented in Table 3. The selection strategy

was demonstrated using the PRISMA flowchart, which is reflected in Figure 1, depicting our

systematic approach towards the selection process in the present study. Out of discoverable

literatures we found a total of 23976 literatures which were relevant to the current research area.

Then there remained around 14662 separate articles after we removed duplicate articles. Then

we started the screening stage of the process, and for this, in the first screening stage, 9314 of

the articles were selected for the purpose of our research. However, on further inspection of the

137 articles found in the previous stage, it was discovered that they did not fit the needs of the

current study and thus were left out of the next stage. The next step was to perform handpicking

of the articles in the collection of articles left to obtain targeted articles that were relevant for

the research resulting to about 9177 papers being obtained. Unfortunately, however, even after

this careful stepwise elimination, round about 8165 papers were further not accepted according

to the strict requirements. Eventually, we were able to end up with 12 review babies after the

selection in process which were seen to be the most meaningful and focused for the

advancement of our study. Our approach started with using a systematic method of putting

specific search terms into any search engine available, to find the articles that pertain to our

234

subject of interest. With this careful step – we provided sufficient coverage and did not lower

the level of the studies incorporated into our analysis.

Table 3: Summary of studies

Reference,

Year

Perform Work Contribution

1 [32], 2020 Web services at

design stage of

the project

The purpose of the research paper is to facilitate

selection of the right web service type in the course

of project design. It provides a detailed introduction

to the web services, describes their structures and

looks into REST and SOAP and their APIs as well.

Other than that, it also looks at previous works

regarding the comparison of SOAP and REST. This

paper concludes by providing the recommendation

of the use of RESTful web services based on the

experiments conducted.

2 [33], 2019 Comparison of

scalable rest

application

programming

interfaces in

different

platforms

This study has developed RestAPI applications in

the C#, Java, Go, Python, and Node.js languages

and studied their load characteristics. Applications

written in Go language were the most stable, and

C# and Java were reasonably stable as well. With

respect to the response, Node.js came next but

comparatively lower, while in heavy load Python’s

applications did poorly. These results were

consistent with the principles of language design

since compiled languages C# and Java proved to be

better than interpreted languages, Python and

Node.js. The study particularly emphasizes the

importance of the language chosen in this case

because of the direct compilation by Go language.

3 [34], 2018 Proposal

solution for

Enterprise

Applications

compared to

Web Services

This work provides an analysis of microservices

architecture vs traditional web services, with regard

to the Architects’ angles of view. Employing

Android mobile ecommerce smart payment

application as a target case study, the two

architectures were evaluated using the provided

coupling huddle. The results of the application of

metrics from the application showed that micro

service architecture has lower service coupling

compared to traditional web services.

4 [35], 2023 API Security

Testing

The paper outlines peculiarities of security testing

of RESTful APIs which includes advocated

measures of input validation, authentication, and

authorization. Insufficiently captured traceability,

authorization problems, potential asset

management problems and wide delayed

assignment were concerns raised in the research.

To complete the paper, findings are drawn and

strategies on how to enhance RESTful API security

with the existing research are given.

235

5 [36], 2021 Fuzz testing for

APIs

The authors employ a black box fuzzing approach

for REST APIs and address issues such as blind

mutation by using Test Coverage Level feedback to

determine the effectiveness of the testing methods.

They improve the strategies of mutation to reduce

the complexity of the testing and generate more

appropriate test cases that will cover various

execution paths within the REST APIs. Testing two

large open-source projects reports 89 bugs but

testing the APIs.guru service excavates 351 bugs in

64 hosted API services.

6 [37], 2022 Web Services

Validation

The paper investigates web services in IoT,

highlighting their importance in client-server

interaction and inter-app communications of IoT

applications. It analyzes REST API and SOAP and

notes that SOAP is a messaging protocol while

REST API is architecture based. This paper

combines the main advantages of both for a more

efficient web service deployment system and tests

links in Postman. XML is primarily used for the

representation of the results, with experimental

data demonstrating enhanced results against earlier

work.

7 [38], 2021 Development of

a prototype for

a web service

The article is devoted to creation of a safe prototype

web service based on SPA for automating user

information accounting, which is topical in the

modern web services industry. It addresses the

issue of web application types, architectural style

choice, secure API creation process, and Python

Flask framework selection. Instructions for setting

up the system, configuring the database, and

securing web servers are provided which helps in

the appreciation of the development of a secure

web service.

8 [39], 2019 Proposal Web

Services to

Overcome

Interoperability

This research uses SOAP web services to allow

users to access data in real time in the fingerprint

attendance management system thus solving the

interoperability problem of the devices and

systems.

9 [40], 2024 Integrating

blockchain with

Web APIs and

SOA enhances

system

interoperability

This research looks at how interoperability is

achieved through the use of blockchain, Web APIs

and Web Services within SOA, which is crucial for

the linkage of different architectures.

Interoperability, which has emerged as one of the

most important requirements in the modern world,

supports the flow of data between various systems

with no restrictions. The characteristic of SOA is

that it also encourages integration in structured way

with support of opening standards, whereas

blockchain is more of a decentralized system with

236

oracles. The study compares these two approaches

and analyzes the issues like trust, scalability, data

integrity, transparency, governance, and

regulation. Such an analysis can help organizations

select the most optimal approach to achieve the

interconnectivity of systems.

10 [41], 2018 Quality of

service of

Web services

This research investigates the evaluation of the

Quality of Service (QoS) based on the users of the

Web services in various settings. In the future,

work will extend with new QoS parameters like

failure probabilities or time of response. Also,

evaluation has been done using skewness, t-test, f-

test, z-test, chi-square test. The chapter determines

that web services issues are application and user

specific depending on the type of application and

nature of the user.

11 [42], 2024 Methodology

for applying

attack

taxonomy to

web services

In this research, the objectives portray the

particular process where attacks are classified and

re-classified in the mid of a set of rapidly

developing new attack techniques on web services.

Still another set of attack classifications consisting

of no less than 33 types of attacks into 5 groups:

brute force, spoofing, flooding, denial of service

and injection attacks, were collected in order to

evaluate the present situation regarding the safety

of web services. Moreover, such taxonomy of

attacks is used for modelling via attack trees. This

method helps combat future aggressions along

many fronts but particularly web services.

12 [43], 2024 Logic

vulnerability

testing model in

Cloud

The Rest logic authors introduce as a methodology

to find logic bugs in the cloud-based REST APIs.

It performs operations over API logic information

to uncover interrelations and inconsistencies and

obtain an information about a runtime stack of

invoked procedures. Resource lifecycle testing and

parameter inference for low coverage of test cases

generation are also discussed. They propose that a

test execution analysis technique is employed to

investigate quite hidden logic faults missed within

2xx1 status codes. The practical implications of this

work have been developed and tested successfully

with the help of real-world open-source cloud Rest

API logic verification proving its efficiency and

inconsistency and logic faults discovery.

1 The client's request has been successfully received, understood, and accepted by the server, indicating a successful interaction

237

6. Discussion

Web services have changed the course of the Internet significantly. This information has

established that software engineers are beginning to embrace the new paradigm shift from web

services to microservices. Many studies were conducted regarding the performance, efficiency,

latency, and scalability of REST and SOAP protocols. In addition, they tried to search for any

better type of web service for a specific atmosphere which would provide more security

advantages. The focus of this paper is on a systematic review, while the PRISMA approach was

used. Identified 23,976 total number of records. To simplify understanding and future

perspective for the readers, a bar chart was created. The figure gives an overview of the

circulation of papers published across diverse publication types including conference papers,

journals, magazines, books, early access articles and standards respectively. This figure

explains our literature review strategy and enables easy assessment for the readers. Another

figure showing the shares of conference papers, conference papers and research journal articles.

Figure 2: Publication by Category

Let’s address each research question based on the contributions from the provided table:

1. RQ1: What is the current scenario regarding the adoption of SOAP and REST in

the current sphere of web service technology and what are the known limitations

in their usage by organizations?

Based on the examined works, it is quite apparent that today, SOAP and REST approaches are

still widely present in web services landscape. Many people still prefer using SOAP over REST

as ERP applications are concerned because SOAP is more robust in terms of message standards

and protocol specifications. Slow communication of information probably can’t be avoided but

rather improved. However, organizations usually encounter various problems such as

interoperability problems, security issues, performance, etc. For instance, RESTful services

indeed provide better performance than SOAP based services even though the issues of security

and effective data exchange are still there.

238

2. RQ2: Under what conditions and workloads will SOAP and REST be equally

efficient among efficiency, latency, and scalability within microservices

architectures?

The comparison studies analyzed in the papers shed some light on the performance

characteristics of SOAP and REST in microservices architectures. SOAP is considered reliable

and has defined standards whereas REST is a lighter version which often leads to better

efficiency and lower latency, especially in load varying cases. Furthermore, the specific code

or the utilized platform imposes particular limits on the expanding capacities of web services

with respect to which compiled languages such as C# and Java are more efficient off than

Python or Node.js which are interpreted languages.

3. RQ3: What are the risks, authentication tools as well as security methods of the

SOAP and REST URLs within a cloud computing environment and what is the

very essence of a cloud which has implications on security?

Numerous articles concern themselves with the issues of security of SOAP and REST APIs in

cloud computing. They focus on issues like input checking, authentication, and authorization,

and risks such as poor logging and inadequate permissions. In addition, Security Concerns also

relate to multi-tenancy and shared resources in the cloud. For this purpose, new methods like

fuzz testing and logic vulnerability testing are suggested that are expected to improve the

security and dependability of SOAP and REST APIs in cloud computing environments.

In this analysis, the findings from the reviewed papers are assimilated in order to understand

the level of adoption, functioning, and security of SOAP and REST web service protocols.

7. More experiments were done: The performance of SOAP and REST APIs is

demonstrated with the use of Python

In this section, we carried out an additional experiment to compare response times of SOAP

and REST- type of web services locally with the help of simple datasets in J-s-O-N format. The

results indicated that the time taken for response in the SOAP API was 0.5678 seconds and the

response time in the REST API was 0.1234 seconds. It is also noteworthy that the scripts were

execution programmed with the help of Python, as it was noted in the text.

1. {

2. "SOAP_API_Response": 1.2345,

3. "SOAP_API_Response_Time": 0.5678,

4. "REST_API_Response": {

5. "data": [

6. {"id": 1, "value": 42},

7. {"id": 2, "value": 73},

8. {"id": 3, "value": 15},

9. {"id": 4, "value": 98},

10. {"id": 5, "value": 27},

11. {"id": 6, "value": 54},

12. {"id": 7, "value": 81},

13. {"id": 8, "value": 36},

14. {"id": 9, "value": 69},

15. {"id": 10, "value": 10}

16.]

17. },

18. "REST_API_Response_Time": 0.1234

19. }

239

Based on our results, we can draw the conclusion that even though the test was conducted in a

simple setup within local environments, the REST API exhibited faster response times

compared to the SOAP API.

8. Conclusion and future work

8.1.Conclusion: Lastly, it can be concluded that PRISMA methods have focused attention on

comparative analysis of REST and SOAP architectures in the systematic review. Based on the

synthesis of the twelve papers included in this literature review, we have reconciled the research

questions and shed knock on the advantages and disadvantages of both approaches. Although

REST turns up to be the most common choice because of its ease of use, flexibility and being

in line with current web technologies, SOAP still plays a critical role in specific areas where

high security and transaction addressing are essential. The question of choosing between REST

and SOAP is mostly determined by the project at hand, which emphasizes that there is a need

to be careful in making architectural choices for web services. At the same time, we performed

a more practical task, which was a local test of SOAP and REST APIs and their effectiveness,

comparing their response times and behavior in controlled conditions.

8.2.Future Work: It is helpful to think about the future levels of these systems and how they

are expected to be doing in reality and whether they will be prone to attacks in current

approaches that they are quite secured. It would also be worthwhile considering how the

systems can be improved to increase their interoperability, and remove use inefficiencies. For

that matter, alternative architectures for developing web applications should be considered, for

example, exploring web services based on microservices, serverless architectures or such where

the application servers take no maintenance from the user. Perhaps, it would even be reasonable

to try to understand if the use of blockchain could contribute positively to the web service

technologies development. As a last point, all web services that we design in the future will

integrate the understanding of all the information systems that we will create within the context

of their intelligence usage. These people, as can be seen, are able to lead us to very interesting

issues that I believe will also change the way web services are created and used in the future.

References

[1] P. El-Kafrawy, E. Elabd, and H. Fathi, "A trustworthy reputation approach for web service

discovery," Procedia Computer Science, vol. 65, pp. 572-581, 2015.

[2] W. J. Obidallah and B. Raahemi., "A Taxonomy to Characterize Web Service Discovery

Approaches, Looking at Five Perspectives," IEEE Symposium on Service-Oriented System

Engineering (SOSE), pp. 458-459, 2016.

[3] I. Lizarralde, J. M. Rodriguez, C. Mateos, and A. Zunino, "Word embeddings for improving

REST services discoverability," Latin American Computer Conference (CLEI), pp. 1-8, 2017.

[4] J. Wang, P. Gao, Y. Ma, K. He, and P. C. Hung, "A web service discovery approach based on

common topic groups extraction," IEEE Access, vol. 5, pp. 10193-10208, 2017.

[5] M. Curiel and A. Pont, "Workload generators for webbased systems: Characteristics, current

status, and challenges," IEEE Communications Surveys & Tutorials, vol. 20, pp. 1526-1546,

2018.

[6] M. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos,, "Spotting and Removing WSDL

Antipattern Root Causes in Code-first Web Services Using NLP Techniques: A Thorough

Validation of Impact on Service Discoverability," Computer Standards & Interfaces, vol. 56, pp.

116-133, 2018.

[7] M. H. I. Hamzah, F. Baharom, and H. Mohd, "An exploratory study for investigating the issues

and current practices of Service-Oriented Architecture adoption," Journal of Information and

Communication Technology, vol. 18, pp. 273-304, 2019.

240

[8] M. H. I. Hamzah, F. Baharom, and H. Mohd, "A ServiceOriented Architecture Adoption Maturity

Matrix using Kano Model: Cross Evaluation between IT and Business Benefits," Journal of

Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, pp. 105-112, 2017.

[9] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, "Bridging service-oriented architecture

and IEC 61499 for flexibility and interoperability," IEEE Transactions on Industrial Informatics,

vol. 11, pp. 771-781, 2015.

[10] A. Ouni, M. Kessentini, K. Inoue, and M. Ó. Cinnéide, "Search-Based Web Service Antipatterns

Detection," IEEE Transactions on Services Computing, vol. 10, pp. 603-617, 2017.

[11] B. Saravana Balaji, R. S. Rajkumar, and B. F. Ibrahim, "Service profile based ontological system

for selection and ranking of business process web services," International Journal of Advanced

Trends in Computer Science and Engineering, vol. 8, pp. 18-22, 2019.

[12] M. G. Galety, B. Saravana Balaji, and M. S. Saleem, "OSSR-P: Ontological service searching and

ranking system for PaaS services," International Journal of Advanced Trends in Computer

Science and Engineering, vol. 8, pp. 271-276, 2019.

[13] R. B. Brinhosa, C. M. Westphall, C. B. Westphall, D. R. Dos Santos, F. Grezele, and D. R.

Westphall, "A validation model of data input for web services," Twelfth International Conference

on Networks, pp. 87-94, 2013.

[14] J. Yu, Q. Z. Sheng, J. K. Swee, J. Han, C. Liu, and T. H Noor, "Model-driven development of

adaptive web service processes with aspects and rules," Journal of Computer and System Sciences,

vol. 18, pp. 533-552, 2015.

[15] A. L. Lemos, F. Daniel, and B. Benatallah, "Web service composition: a survey of techniques and

tools," ACM Computing Surveys (CSUR), vol. 48, p. 33, 2016.

[16] R. Gunasri and R. Kanagaraj, "Natural Language Processing and Clustering based service

discovery," International Journal of Scientific & Technology Research, vol. 3, pp. 28-31, 2017.

[17] A. De Renzis, M. Garriga, A. Flores, A. Cechich, C. Mateos, and A. Zunino, "A domain

independent readability metric for web service descriptions," Computer Standards & Interfaces,

vol. 50, pp. 124-141, 2017.

[18] T. Masood, A. Nadeem, and S. Ali, "An automated approach to regression testing of web services

based on WSDL operation changes," IEEE 9th International Conference on Emerging

Technologies (ICET), pp. 1-5, 2013.

[19] L. Kumar and A. Sureka, "An Empirical Analysis on Web Service Anti-pattern Detection Using

a Machine Learning Framework," IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), pp. 2-11, 2018.

[20] H. Wang, M. Kessentini, and A. Ouni, "Interactive refactoring of web service interfaces using

computational search," IEEE Transactions on Services Computing, 2017.

[21] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino, "An approach to improve code-first web

services discoverability at development time," Proceedings of the 27th Annual ACM Symposium

on Applied Computing, pp. 638-643, 2012.

[22] C. Mateos, A. Zunino, S. Misra, D. Anabalon, and A., "Keeping web service interface complexity

low using an oo metric-based early approach," XLII Latin American Computing Conference

(CLEI), pp. 1-12, 2016.

[23] Kishor Wagh and Ravindra Thool, "A Comparative Study of SOAP Vs REST Web Services

Provisioning," Journal of Information Engineering and Applications, vol. 2, no. 5, pp. 12-17,

2012.

[24] P. Seda, P. Masek, J. Sedova, M. Seda, J. Krejci and J. Hosek, "Efficient Architecture Design for

Software as a Service in Cloud Environments," 10th International Congress on Ultra Modern

Telecommunications and Control Systems and Workshops (ICUMT), pp. 1-6, 2018.

[25] A. Neumann, N. Laranjeiro and J. Bernardino, "An Analysis of Public REST Web Service APIs,"

IEEE Transactions on Services Computing, vol. 14, no. 4, pp. 957-970, 2021.

[26] Fuad Alshraiedeh and Norliza Katuk, "SOAP and RESTful web service anti-patterns: A scoping

review," International Journal of Advanced Trends in Computer Science and Engineering, vol. 8,

no. 5, pp. 1831-1841, 2019.

[27] Juris Tihomirovs and Janis Grabis, "Comparison of SOAP and REST Based Web Services Using

Software Evaluation Metrics," Information Technology and Management Science, vol. 19, pp. 92-

97, 2016.

241

[28] Eriyanto Adhi Setyawan and Fadhil Hidayat, "Web Services Security and Threats: A Systematic

Literature Review," International Conference on ICT for Smart Society (ICISS), pp. 1-6, 2020 .

[29] Martin Garriga, Cristian Mateos, Andres Flores, Alejandra Cechich and Alejandro Zunino,

"RESTful service composition at a glance: A survey," Journal of Network and Computer

Applications, vol. 60, pp. 32-53, 2016.

[30] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N. Moha, "A systematic literature review on

the detection of smells and their evolution in object-oriented and service-oriented systems,"

Software: Practice and Experience, vol. 49, no. 1, pp. 3-39, 2019.

[31] David Moher, Larissa Shamseer, Mike Clarke, Davina Ghersi, Alessandro Liberati, Mark

Petticrew, Paul Shekelle and Lesley A Stewart, "Preferred reporting items for systematic review

and meta-analysis protocols (PRISMA-P) 2015 statement," 2015.

[32] Sarah Hussein Toman, "Review of Web Service Technologies: REST over SOAP," Journal of Al-

Qadisiyah for Computer Science and Mathematics, vol. 12, no. 4, pp. 18-30, 2020.

[33] KEMER Erdem and SAMLI, Ruya, "Performance Comparison Of Scalable Rest Application

Programming Interfaces In Different Platforms," Computer Standards & Interfaces, vol. 66, 2019.

[34] V. Raj and S. Ravichandra, "Microservices: A perfect SOA based solution for Enterprise

Applications compared to Web Services," IEEE International Conference on Recent Trends in

Electronics, Information & Communication Technology (RTEICT), pp. 1531-1536, 2018.

[35] Sattam J Alharbi and Tarek Moulahi, "API Security Testing: The Challenges of SecurityTesting

for Restful APIs," International Journal of Innovative Science and Research Technology, vol. 8,

no. 5, pp. 1485 - 1499, 2023.

[36] Chung-Hsuan Tsai, Shi-Chun Tsai and Shih-Kun Huang, "REST API Fuzzing by Coverage Level

Guided Blackbox Testing," 2021.

[37] Jovita, J Auxily; Ramachandran, G and Edison Rathinam., "REST API and SOAP - Web Services

Validation in IoT environment," vol. 20, no. 16, pp. 695-710, 2022.

[38] D V Kornienko, S V Mishina and M O Melnikov, "The Single Page Application architecture when

developing secure Web services," 5th International Scientific Conference on Information,

Control, and Communication Technologies (ICCT-2021), vol. 2091, pp. 1-12, 2021.

[39] Alam Rahmatulloh, Rohmat Gunawan and Irfan Darmawan, "Web Services to Overcome

Interoperability in Fingerprint-based Attendance System," Proceedings of the 2018 International

Conference on Industrial Enterprise and System Engineering (IcoIESE 2018), pp. 277-282, 2019.

[40] Z. A. Shaikh, K. Dahri, A. A. Memon, S. Tahseen, F. A. Abbasi and K. -U. -R. Khoumbati,

"Interoperability: Blockchain's Solution to SOA & Traditional Service-Based Integration

Challenges," IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC), pp. 1-

5, 2024.

[41] Maheswari S and Justus Selwyn, "A Review on the Quality of Service of Web Services,"

International Journal of Mechanical Engineering and Technology (IJMET), vol. 9, no. 12, pp.

414-424, 2018.

[42] Marcelo I. P. Salas, "Attack Taxonomy Methodology Applied to Web Services," Latin-American

Journal of Computing (LAJC), vol. 11, no. 1, pp. 68-77, 2024.

[43] Ziqi Wang,Weihan Tian and Baojiang Cui, "RESTlogic: Detecting Logic Vulnerabilities in Cloud

REST APIs," Computers, Materials and Continua, vol. 78, no. 2, pp. 1797-1820, 2024.

242

Appendix A

1. #Snippet 1

2.

3. C:\WINDOWS\system32>cd C:\Users\Enes\Desktop\Testing Web Services

4.

5. C:\Users\Enes\Desktop\Testing Web Services>python soap_rest_speed_test.py

6. * Serving Flask app 'soap_rest_speed_test'

7. * Debug mode: on

8. WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI

server instead.

9. * Running on http://127.0.0.1:5000

10. Press CTRL+C to quit

11. * Restarting with stat

12. * Debugger is active!

13. * Debugger PIN: 128-585-682

14.

15. 127.0.0.1 - - [15/Apr/2024 21:13:15] "GET / HTTP/1.1" 200 -

16. 127.0.0.1 - - [15/Apr/2024 21:13:15] "GET /favicon.ico HTTP/1.1" 200 -

17. 127.0.0.1 - - [15/Apr/2024 21:13:43] "GET / HTTP/1.1" 200 -

18. 127.0.0.1 - - [15/Apr/2024 21:14:12] "GET /soap-api HTTP/1.1" 200 -

19. 127.0.0.1 - - [15/Apr/2024 21:15:03] "GET /rest-api HTTP/1.1" 200 -

In the Snippet 1, the audience is provided with the console output when the server is being run

in a local environment. The http header requests and responses logs prove that the requests were

successful which can be classified by using the status code 200. One line shows request

transactions made with HTTP and its respective status code.

Appendix B

1. #Snippet 2

2. from flask import Flask, jsonify

3. from zeep import Client

4. import requests

5. import random

6.

7. app = Flask(__name__)

8.

9.

10. SOAP_URL = "http://www.dneonline.com/calculator.asmx?WSDL"

11. REST_URL = "https://jsonplaceholder.typicode.com/posts"

12.

13.

14. @app.route('/soap-api', methods=['GET'])

15. def soap_api():

16. try:

17.

18. client = Client(SOAP_URL)

19. result = client.service.Add(random.randint(1, 100), random.randint(1, 100))

20. return jsonify({'response': result})

21. except Exception as e:

22. return jsonify({'error': str(e)})

23.

24. @app.route('/rest-api', methods=['GET'])

25. def rest_api():

26. try:

27.

28. response = requests.get(REST_URL)

29. data = response.json()

30. return jsonify({'response': data})

31. except Exception as e:

32. return jsonify({'error': str(e)})

33.

34. if __name__ == '__main__':

243

35. app.run(debug=True)

Code Snippet 2 deals with both SOAP and REST based web services using Flask as a platform.

By means of Zeep, it is easy to invoke SOAP services and requests library is used for RESTful

operations. The SOAP API request is directed towards the calculator’s service at

‘http://www.dneonline.com/calculator.asmx?WSDL’, which is able to perform addition of two

random integer operands by the clients. Conversely, the REST API endpoint makes use of a

GET request to fetch data from ‘https://jsonplaceholder.typicode.com/posts’ and responds with

the JSON data obtained. This snippet gives a brief example of how you can implement SOAP

and REST APIs in a single Flask application which would help in integration and

communication of the APIs within the application.

