
305

UDC: 004.652.4.056.55:004.414.23

Professional paper

DESIGNING USE CASE DIAGRAMS AND SCENARIOS FOR

CREATING THE BLOCKCHAIN SYSTEM FOR BIG DATA

MANAGEMENT

Hakan REXHEPI1*, Avni RUSTEMI1, Sazana ILAZI1, Florim IDRIZI1, Grela

AJVAZI1, Hirijete IDRIZI2

1*Department of Informatics, Faculty of Natural Sciences and Mathematics, University of Tetova, N. Macedonia
2Faculty of Agriculture and Biotechnology, University of Tetova, N. Macedonia

*Corresponding Author: e-mail: h.rexhepi320057@unite.edu.mk

Abstract

Smart contracts programming plays an important role nowadays in creating blockchain systems. Blockchain

technology is one of the technologies that offer hope for overcoming problems related to the preservation of

identity, privacy, transparency, and, above all, the immutability of data. The creation of blockchain systems is

a challenge that researchers are facing, especially with big data management, due to the high maintenance costs.

Currently, however, blockchain technology is finding a lot of use when combined with centralized databases,

effectively replicating a blockchain database and network. Through the paper, we will try to clarify the main

challenges in blockchain programming, and the reasons for not implementing blockchain programming for big

data management. We will present examples of smart contract programming in the Solidity programming

language, and we will make analyses and comparisons with centralized object-oriented systems. Part of the

work will also be the design of use case diagrams and scenarios for the implementation of blockchain systems

in big data management. The main purpose of this paper is to arouse some interest among young developers,

to deal with programming in Solidity and the creation of blockchain systems for big data management.

Keywords: smart contract, blockchain technology, Solidity programming language, data immutability.

1. Introduction

The creation of decentralized systems nowadays is a challenge that researchers are facing, due

to the decentralized way of managing and storing data, which is challenging, especially when

it comes to big data. Blockchain technology, even though it is marking a technological

revolution in the field of programming and data management, is again challenging and is facing

numerous problems. Among the many challenges, it is worth highlighting the lack of interest

of researchers in dealing with the problems and implementation of blockchain in big data,

especially for data management and the creation of systems for their management (Rustemi,

Dalipi, Atanasovski, & Risteski, 2023a). Blockchain is proving to be successful in creating

systems or software modules, where the immutability of data is required, and the same can be

verified more easily in the future. This is because blockchain technology is characterized by a

distributed ledger, in which the data of the entire blockchain network is stored, as well as all the

nodes that are connected to the network, contain a copy of this ledger, which makes it

impossible for the data to update or insert new data without being confirmed by all the nodes

that are in the blockchain network. Any data that is entered into the blockchain network cannot

be deleted or changed, which represents the immutability of the blockchain as a unique

characteristic that distinguishes it from centralized systems (G V, B S, L M, B, & H B, 2022).

When we talk about the creation of decentralized systems based on blockchain technology, the

use of smart contracts is inevitable. Smart contracts are code sequences, which enable the

execution of agreements between two parties in digital form, based on predefined conditions.

They enable automatic execution of the code, which guarantees the reliability of the system and

https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2825

https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2825

306

the fulfillment of predefined conditions between the two involved parties. Smart contracts

above all are useful to facilitate the process of data verification, to facilitate and assist in the

fulfillment of obligations between the parties included in the contract, and the automatic

execution of code sequences without the intervention of a third party, something which makes

them safer and more reliable for use in everyday life during the creation of blockchain systems

for data management (Saini, Roy, Chelliah, & Patel, 2021). Compared to traditional contracts,

smart contracts are efficient and faster, they are immutable and cost-effective, they work with

digital signatures and in virtual spaces, and they do not require third-party authorization. Smart

contracts are compatible with the Ethereum platform, as well as the Solidity programming

language. Each execution of them on the Ethereum platform has its own cost, which is

calculated with Ether (Gugnani, Godfrey, & Sadhya, 2022).

Decentralized systems have begun to be used in various fields, although various challenges are

encountered during practical implementations, due to the characteristics of the blockchain.

However, very important during the creation of decentralized systems, is the definition of the

main actors who will use the system. Then the definition of auxiliary equipment for the

realization of the system and an analysis and long-term strategic plan. The definition of use case

diagrams and scenarios is also very important in the realization of the system, up to the

definition of the functional and non-functional requirements of the system. Also, the definition

of the conceptual model, the architecture of the system operation, and the detailed analysis of

the practical implementation are necessary for the successful implementation of blockchain

systems (Rustemi, Dalipi, Atanasovski, & Risteski, 2023b).

Through this paper, we will first describe the blockchain system, its main characteristics, to the

advantages and disadvantages compared to traditional systems. Then we will design use case

diagrams for the main actors in a big data management system, describing also use case

scenarios for the same. We will briefly describe all the necessary equipment for the

implementation of the blockchain system and, using the Solidity programming language, we

will give examples of smart contract implementation, graphically describing their execution in

the blockchain network.

2. Related works

More and more attempts are being made to digitize the services in various public and private

institutions, and with this to facilitate the procedures for generating and verifying documents,

as well as to speed them up and to be able to provide transparent services at any time. Although

in the centralized systems, there are more and more attempts to introduce different features of

artificial intelligence, blockchain technology, and different encryption algorithms, with the sole

purpose of increasing the efficiency, security, and reliability of the system, despite many issues

that have to do with identity, privacy and data security remain as issues that are discussed and

are not being implemented through centralized systems.

Unlike centralized systems, blockchain systems for big data management are characterized by

the classification of services into private, public, and consortium. Services are transparent, data

is immutable. Different cryptographic mechanisms are used for data encryption and decryption,

which makes data decryption impossible. Despite the advantages, blockchain systems are

characterized by more limitations and shortcomings during practical implementations.

Blockchain systems are the target of various attacks, as a result of the transparency of the

various services they offer. Lack of standardization of services, as a result of the lack of

standardization of smart contracts. Lack of blockchain databases, and maintaining services for

a longer time is very expensive. Most of the data is stored in file storage, or in the blockchain

network itself, or they also use centralized databases with blockchain features. The process of

transferring data from centralized systems to blockchain ones is difficult and faces numerous

307

problems. And above all, there is a lack of staff, programmers, and researchers who deal with

blockchain programming and big data management, because blockchain technology is used

more for economic benefits, and in particular with cryptocurrencies (Rustemi, Atanasovski, &

Risteski, 2023).

Unlike centralized systems, where practical implementation requires a programming language,

database, and system design, blockchain systems need more additional tools for

implementation. The implementation of the blockchain network is made possible through the

Ethereum Virtual Machine, which represents the simulation of the blockchain network, offering

a real environment for the implementation of virtual activities that must be part of the

blockchain network. First is the frontend part, which represents the part with which users will

have direct contact. Here are included different user interfaces with which the blockchain

system is designed. For design, the same tools as the centralized systems can be used, including

HTML, CSS, Node.js, and the newest versions. After completing the specified user interface,

they initiate the execution of the smart contract, which represents the backend part of the system.

The coding of the smart contract on the Ethereum platform is done using the Solidity

programming language. There are a large number of applications that offer free testing and

execution, to test and optimize their code. It should be taken into account that each real

execution in the blockchain network has its own cost. Truffle Suite is a framework that

simulates the blockchain network, which consists of several parts, but among the most

important is Ganache. All accounts, blocks, transactions, contracts, and activities performed by

a user are presented in Ganache. For each realization of the transaction, the receiver's address,

the price of the execution of the transaction in Gas, Network ID, the status of the mining process,

etc. are given through Ganache (Truffle Suite, n.d.). To carry out transactions on the Ethereum

platform, you must confirm and connect the blockchain wallet to the blockchain network. One

of the most used wallets is also Metamask, which is connected to our Ethereum address, every

transaction is confirmed by the same and a certain amount of Ether is paid (MetaMask, n.d.).

Very important is the use of RemixIDE, which is an integrated development environment, for

testing, optimizing, and correcting the smart contract code, as well as for calculating in advance

the cost of executing the smart contract in the blockchain network (Remix, n.d.). And in the

end, the definition of blockchain storage is very important, for storing data for a longer period.

Among the blockchain databases used for practical implementations are: Interplanetary file

storage (IPFS), which is a file storage based on the peer-to-peer protocol, BigChainDB, Swarm,

Cassandra, ChainifyDB, CovenantSQL, Modex Blockchain Database (BCDB), Postchain

(Rustemi, Atanasovski, & Risteski, 2023). Figure 1 describes the main components of the

blockchain system, starting from the frontend, backend, ethereum network, and up to the

blockchain storage where the data is stored for a longer period.

308

Figure 1. Overview of the main components of the blockchain system

3. Use case diagrams and scenarios

The most efficient method for system design, with which the functionalities of the system, in

general, are shown until its final generalization, which is otherwise known as Model-Driven

Architecture (MDA), is the Unified Modeling Language (UML), which consists of several

diagrams that specify the structure and behavior of the system in general. UML diagrams can

also be used for the design of smart contracts, their functionality, and their connection during

execution, with the aim of more successful validation and verification of the system (Jurgelaitis,

čeponienė, & Butkienė, 2022). As the most important actors in the use of the blockchain system

for big data management, there are many, however the most important are data providers, users

of the system through different companies, data consumers, and developers in the creation and

maintenance of the system structure, regulators and auditors as well as the regular users of the

system that they use for different purposes, depending on the nature of the company that offers

such a system.

Figure 2.a. Use case diagram for enterprise

user

Figure 2.b. Use case diagram for data

provider

309

Figure 2.c. Use case diagram for data

consumer

Figure 2.d. Use case diagram for developer

Figure 2.e. Use case diagram for random user

Large companies, corporations, and various businesses can use blockchain systems for big data

management, to create the supply chain, logistics, various customer transactions, etc. Through

Figure 2.a. we have designed the use case diagram for the enterprise user. Among the most

regular activities of this actor are: uploading data for longer storage or validation, the same can

be accessed later, management permissions for the data uploaded to the system, where the

permissions of other users are determined, tracking the execution of transactions that are carried

out both from the side of customers, but also from other users who have them under their

control.

Data providers are entities that influence the generation, storage, and processing of big data in

the blockchain, whether for their storage, real-time access, or validation. It can be IoT devices,

sensors, and any entity that produces large amounts of data, and that directly affects the real

processing of big data. Among other things, data providers can verify data integrity, access data

analytics, monitor data transactions, upload data to the blockchain, and encrypt the updated

data. Figure 2.b. presents the use case diagram for the data provider, presenting the most

important use case activities.

Data consumers are all users, corporations, or businesses that require access to data stored in

the blockchain system, to carry out their analysis, research, decision-making, purchase, sale,

and other purposes. , depending on the nature of the blockchain system. Among other things,

consumer data can analyze data, request data verification, monitor data transactions, and take

care of the system's technical issues. Figure 2.c. presents the use case diagram for the data

consumer, presenting the most important use case activities.

Developers are the key actors in the creation and maintenance of the blockchain system, and in

particular in the programming of smart contacts and their successful execution in the blockchain

network. The developers are the practical implementers of the system, and they take care that

the system is functional, and enables the provision of functional and non-functional services of

310

the system. Developers, among other things, must also take care of data analytics, and

implement encryption techniques, privacy-preserving techniques, and control mechanisms.

Figure 2.d. presents the use case diagram for the developer, presenting the most important use

case activities.

Random users are the real users of the blockchain system. They can be individuals or entities

that have direct interaction with the system for managing their daily work. Depending on the

nature and space where the blockchain system is implemented, regular users can be researchers,

investors, journalists, various public or private institutions, and many other entities. Figure 2.e.

describes the use case diagram for random users, describing some of their main activities in a

blockchain system.

4. Smart contract deploying and testing

Smart contracts are self-executing contracts with the terms of the agreement between buyer and

seller directly written into code. These contracts automatically enforce and execute the terms of

an agreement when predetermined conditions are met. Smart contracts run on blockchain

platforms like Ethereum, which ensures transparency, immutability, and decentralization.

Solidity is the programming language used for writing smart contracts on the Ethereum

blockchain. It's specifically designed for creating smart contracts and is influenced by C++,

JavaScript, and Python. Solidity allows developers to define the rules and logic of their smart

contracts, specifying how they should behave under certain conditions. It's an essential tool for

building decentralized applications (DApps) and implementing automated trustless transactions

on the blockchain.

Here is an example of a smart contract (the code below is written, optimized, and tested using

RemixIDE):

Crowdfunding Contract: This contract allows users to contribute funds towards a project and

release the funds to the project owner only when a funding goal is met.
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Crowdfunding {

 address public projectOwner;

 uint public fundingGoal;

 uint public totalFunds;

 mapping(address => uint) public contributions;

 event FundsContributed(address contributor, uint amount);

 event FundingGoalReached(uint totalFunds);

 event FundsReleased(address projectOwner, uint amount);

 constructor(uint _goal) {

 projectOwner = msg.sender;

 fundingGoal = _goal;

 }

 function contribute() public payable {

 require(msg.value > 0, "Contribution amount must be greater than 0");

 contributions[msg.sender] += msg.value;

 totalFunds += msg.value;

 emit FundsContributed(msg.sender, msg.value);

 if (totalFunds >= fundingGoal) {

 emit FundingGoalReached(totalFunds);

 }

 }

 function releaseFunds() public {

 require(msg.sender == projectOwner, "Only the project owner can release funds");

311

 require(totalFunds >= fundingGoal, "Funding goal not reached yet");

 uint amountToRelease = totalFunds;

 totalFunds = 0;

 payable(projectOwner).transfer(amountToRelease);

 emit FundsReleased(projectOwner, amountToRelease);

 }}

We have presented the result of the deployment process in RemixIDE in Figure 3, where, among

other things, all the details of the deployment process of the smart contract are given, such as

the hash code of the transaction, the address of the sender and recipient of the transaction, gas

expenses, etc.

Figure 3. Crowdfunding.sol successfully compiled and deployed

We've conducted a series of tests on our Crowdfunding smart contract to ensure its functionality

and security. First, we performed an ether contribution test, successfully transferring 1 ether to

the smart contract from a specified address. Next, we attempted to release the funds from an

address that was not the project owner, which correctly failed as expected. We then retried

releasing the funds using the project owner's address, and the test passed, confirming that only

the project owner can release the funds. Finally, we verified the funding goal of the smart

contract using the project owner's address, ensuring that the goal was correctly set and

maintained throughout the tests. These tests validate the key functionalities and access controls

of the smart contract. Figures 4a, 4b, and 4c show the result of testing and validating the smart

contract.

312

Figure 4.a. Ether contribution test passed

Figure 4.b.releaseFunds failed because only the project owner can call this function

Figure 4.c. Funds released by the project owner

5. Conclusion

To sum up, our study has investigated how blockchain technology and smart contracts can

revolutionize the large data management industry. There has been a paradigm shift in the way

large-scale data may be stored, shared, and safeguarded thanks to the programmable logic of

smart contracts and the decentralization and immutability inherent in blockchain networks.

The capacity of blockchain technology to offer an unchangeable and transparent ledger for data

exchanges is one of its main advantages. Blockchain networks guarantee data integrity and

participant confidence by utilizing cryptographic algorithms and consensus processes. This

reduces the possibility of data alteration or inappropriate access. This is especially important

when it comes to big data, since the accuracy and dependability of the data are critical.

Smart contracts enable self-executing agreements depending on predetermined criteria,

providing a novel method of automating data management procedures. This results in cost

313

savings and enhanced efficiency by streamlining workflows and lowering the need for

middlemen.

As blockchain networks are decentralized, they support inclusion and data sovereignty, giving

people and organizations the ability to keep ownership their data assets. Blockchain technology

promotes a more democratic and fair data environment where data ownership and privacy rights

are respected by doing away with central authority and intermediaries.

Nevertheless, blockchain technology has drawbacks in addition to its many advantages. To fully

realize the potential of blockchain-based big data solutions, scalability, interoperability, and

regulatory issues are still major obstacles that need to be overcome.

References

[1] Gugnani, P., Godfrey, W. W., & Sadhya, D. (2022). Ethereum Based Smart Contract for Event

Management System. In 2022 IEEE 6th Conference on Information and Communication

Technology (CICT) (pp. 1-5). Gwalior, India. doi: 10.1109/CICT56698.2022.9997939

[2] G V, S., B S, S., M, G. L., B, V., & B, P. H. (2022). Profile - Decentralized Application for

Education. In 2022 International Conference on Emerging Techniques in Computational

Intelligence (ICETCI) (pp. 76-83). Hyderabad, India. doi: 10.1109/ICETCI55171.2022.9921360

[3] Jurgelaitis, M., čeponienė, L., & Butkienė, R. (2022). Solidity Code Generation From UML State

Machines in Model-Driven Smart Contract Development. IEEE Access, 10, 33465-33481. doi:

10.1109/ACCESS.2022.3162227

[4] Rustemi, A., Atanasovski, V., & Risteski, A. (2023). DATABASE DESIGN IN A BLOCKCHAIN-

BASED SYSTEM FOR GENERATING AND VERIFYING ACADEMIC CREDENTIALS.

Journal of Electrical Engineering and Information Technologies, 8, 93-100. doi:

10.51466/JEEIT2382210093r

[5] Rustemi, A., Dalipi, F., Atanasovski, V., & Risteski, A. (2023). A Systematic Literature Review on

Blockchain-Based Systems for Academic Certificate Verification. IEEE Access, 11, 64679-64696.

doi: 10.1109/ACCESS.2023.3289598

[6] Rustemi, A., Dalipi, F., Atanasovski, V., & Risteski, A. (2023). Towards a Conceptual Model of a

Blockchain System for Automatic Generation of Academic Diplomas: Use Cases and Scenarios. In

2023 4th International Conference on Communications, Information, Electronic and Energy

Systems (CIEES) (pp. 1-6). Plovdiv, Bulgaria. doi: 10.1109/CIEES58940.2023.10378773

[7] Saini, K., Roy, A., Chelliah, P. R., & Patel, T. (2021). Blockchain 2.0: A Smart Contract. In 2021

International Conference on Computational Performance Evaluation (ComPE) (pp. 524-528).

Shillong, India. doi: 10.1109/ComPE53109.2021.9752021

[8] Truffle Suite. (n.d.). Ganache. Retrieved April 4, 2024, from

https://archive.trufflesuite.com/docs/ganache/

[9] MetaMask. (n.d.). A crypto wallet & gateway to blockchain apps. Retrieved April 4, 2024, from

https://metamask.io/

[10] Remix. (n.d.). The Native IDE for Web3 Development. Retrieved April 4, 2024, from

https://remix.ethereum.org

