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Abstract 
 

In this paper, firstly, we show that there can be constructed an affine plane Α(𝐹) from ternary ring in natural 

way. Firstly, we present the basic properties of affine and projective planes including their completion with 

each other, respectively, then we continue with their definition over a skew-field. Considering that not all affine 

planes are of the formA2(𝐹), we use the Desargues properties to characterize them. Mathematically projective 

geometry if even more natural than its affine version. 

The work continues by obtaining the projective planes Ρ(𝐹)  by “completing” the plane constructed from 

ternary system  , F , by means of projective completion and then constructing affine planes from projective 

planes by means of affine restriction. One should add a new point “at infinity” for each direction, there will 

also be a line “at infinity”. Affine lines ℓ  are too short, we must force the projective line to contain the direction  

ℓ̂ = ℓ ∪ {[ℓ]}. The concepts are equivalent, if you have got one, you have got the other. In the end we show 

the process of affinization and projectivization of the projective and affine plane.  

Affinization of projectivization of an affine plane Α(𝐹) may depend on the choise of line removed from Α̂(𝐹), 
and need not be isomorfiphic to Α(𝐹). 

 
Keywords: affine plane, projective planes, affinization, ternary ring. 

 

1. Introduction 

 

Definition 1.1. (Parallel). Two lines ℓ,𝑚 are parallel if either ℓ =  𝑚 or there is no point 

incident to both: 

ℓ ∥ 𝑚 𝑖𝑓𝑓 [ℓ =  𝑚] ∨ [(∀𝑎)¬(𝑎Iℓ ∧  𝑎𝐼𝑚)]                                      (1.2) 

Notice that it captures the intuition of ℝ2, not of ℝ3. This notion plays a role only when studying 

affine planes and disappears when studying projective planes [2]. 

Definition 1.2. (Affine plane) [3, 5] An affine 𝔸 is an incidence geometry satisfying the 

following axioms AP1, AP2, AP3: 

AP1.(∀𝑎)(∀b)[(𝑎 ≠ b) → (∃! ℓ)(𝑎Iℓ ∧  𝑏𝐼ℓ)]. 
AP2. (∀𝑎)(∀ℓ)(∃!𝑚)[(𝑎I𝑚) ∧ (ℓ ∥ 𝑚)]. 
AP3. There exist three non-collinear points. 

 

Definition 1.3. (Projective plane) [1, 3] A projective plane is an incidence 

geometry(𝒫, ℒ, 𝐼)satisfying thefollowing axioms PP1, PP2, PP3: 

PP1. Through any two distinct points, there is a unique line. 

PP2.Any two distinct lines meet at a unique point. 

PP3.There are four points not three of which are collinear. 

Definition 1.4. [5, 8] We say (ℝ, 𝔽) is a ternary ring if it satisfies the axioms: 

T1. For any 𝑥,𝑚, 𝑦 ∈ ℝ the equation𝐹(𝑥,𝑚, ℓ) = 𝑦 has a unique solution ℓ. 
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T2. For any 𝑥, 𝑥’, 𝑦, 𝑦’ ∈ ℝ the pair of equations 𝐹(𝑥,𝑚, ℓ) = 𝑦, 𝐹(𝑥’,𝑚, ℓ) = 𝑦’ has a 

unique solution 𝑚, ℓ if 𝑥 ≠ 𝑥’. 
T3. For any ℓ, ℓ’,𝑚,𝑚’ ∈ ℝ the equation 𝐹(𝑥,𝑚, ℓ) = 𝐹(𝑥,𝑚’, ℓ’) has a unique solution 

x if 𝑚 ≠ 𝑚’. 
Definition 1.5. [5] (Affine plane over a skew-field 𝔸2(𝔽)). Let 𝔽 be a skew-field. Let𝔸2(𝔽) be 

the following incidence geometry: 

 Points are pairs (𝑥, 𝑦) ∈ 𝔽2; 

 Lines are sets of them {𝑝 + 𝑡�⃗�: 𝑡 ∈ 𝔽} for 𝑝  a point and �⃗� ≠ �⃗� a non-zero vector; 

 Incidence is set-theoretic membership. 

This generalizes the familiar case of 𝔸2(ℝ) as it allows skew-fields. 

Definition 1.6. [2, 4] (Projective plane over a skew-field ℙ2(𝔽)). Let 𝔽 be a skew-field. Let 

ℙ2(𝔽) be the following incidence geometry: 

 As points, the left-vector lines of 𝔽3; 

 As points, the left-vector planes of 𝔽3; 

 As incidence relation, set-theoretic inclusion ⊆. 

 

2. Planes From Rings 
 

Let ℝ be any set with a ternary composition  𝐹:ℝ × ℝ ×ℝ → ℝ (thinking of 𝐹(𝑥,𝑚, ℓ) =
𝑥𝑚 + ℓ)). An isomorphism ℝ → ℝ of ternary systems is a bijective map preserving with little 

algebraic structure we have, namely the ternary composition: 

𝜎(𝐹(𝑥,𝑚, ℓ)) = 𝐹(𝜎(𝑥), 𝜎(𝑚), 𝜎(ℓ))                                                     (2.1) 

The plane associated with the ternary system (ℝ, F) is 𝔸2(ℝ) = (𝒫, ℒ, 𝐼), where: 

{
 

 
𝐹(ℝ, 𝔽) = ℝ × ℝ = {{𝑥, 𝑦}|𝑥, 𝑦 𝜖 ℝ}

ℒ(𝐹,ℝ) = ℝ ∪ ℝ × ℝ = {[𝑎], [𝑚, ℓ]|𝑎,𝑚, ℓ ∈ ℝ}

𝐼(ℝ, 𝔽)is defined by(𝑥, 𝑦) 𝐼 [𝑎] ⇔ 𝑥 = 𝑎
(𝑥, 𝑦) 𝐼 [𝑚, ℓ] ⇔ 𝑦 = 𝐹(𝑥,𝑚, ℓ).

                                             (2.2) 

𝔸2(𝔽) satisfies the Parallel Criterion, 
[𝑚, ℓ]||[𝑚′, ℓ′] ⇔ 𝑚 = 𝑚′                                                                (2.2) 

which ensures that the parameter m measures slope [8, 9]. 

We consistently write 𝐹(𝑥,𝑚, ℓ) = 𝑦 even though at first glance all the variables 𝑥,𝑚, ℓ, 𝑦 from 

ℝ are on the same footing and could be denoted by any letter we choose, the reason is that x,y 

will be the x and y coordinates of points, m will be the slope of a line and ℓ they-intercept of a 

line.  

Theorem 2.1. (Plane Construction Theorem) The plane 𝔸2(ℝ) constructed from a ternary 

system (ℝ, F) is an affine plane satisfying the Parallel Criterion 2.2 if (ℝ, F) is a ternary ring 

with at least 2 distinct elements [4, 6]. 

Proof:  Consider the axiom AP1that there be a unique line through any two points 𝑃 = (𝑥, 𝑦), 
𝑃’ = (𝑥’, 𝑦’). If 𝑥 = 𝑥’ then there is a unique line ℒ of the form [𝑎] incident to both points 

(namely 𝑎 = 𝑥 = 𝑥’), and no line of the form [𝑚, ℓ] since 𝑦 = 𝐹(𝑥,𝑚, ℓ), 𝑦’ = 𝐹(𝑥’,𝑚, ℓ) for 

𝑥 = 𝑥’ forces 𝑦 = 𝑦’, 𝑃 = 𝑃’ by single-valuedness of F. If 𝑥 ≠ 𝑥’ there is no ℒ = [𝑎] on both 

points, and the condition that there be a unique ℒ = [𝑚, ℓ]on both is that 𝑦 = 𝐹(𝑥,𝑚, ℓ),𝑦’ =
𝐹(𝑥’,𝑚, ℓ)have a unique solution 𝑚, ℓ for 𝑥 ≠ 𝑥’. Thus, AP1 is equivalent to T2. 

The axiom that two lines ℒ,ℒ′intersect in exactly 1 or 0 points involves three cases. Ifℒ = [𝑎’] 
for 𝑎 ≠ 𝑎’ the lines do not intersect, since if (x, y) were on ℒ and ℒ′ we would have𝑎 = 𝑥 = 𝑎’. 
If ℒ = [𝑎], ℒ′ = [𝑚, ℓ] then (x, y) is on ℒ and ℒ′iff𝑥 = 𝑎 and 𝑦 = 𝐹(𝑥,𝑚, ℓ), so the unique 

point of intersection is (𝑎, 𝐹(𝑎,𝑚, ℓ)). If ℒ = [𝑚, ℓ], 𝐿’ = [𝑚’, ℓ’] then the points of intersection 

𝑃 = (𝑥, 𝑦) are the solutions of the equations 𝑦 = 𝐹(𝑥,𝑚, ℓ) = 𝐹(𝑥,𝑚’, ℓ’). The Parallel 

Criterion is that no solution exists (the lines are parallel) iff 𝑚 = 𝑚’. Thus, AP2 and the Parallel 
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Criterion 2.2 together are equivalent to the condition that 𝐹 = (𝑥,𝑚, ℓ) = 𝐹(𝑥,𝑚’, ℓ’) have a 

unique solution if 𝑚 ≠ 𝑚’ and no solution if 𝑚 = 𝑚’ (ℓ ≠ ℓ’), ie. to T3 and the uniqueness part 

of T1. 

The axiom AP3 that through each 𝑃 = (𝑥, 𝑦) there is a unique line ℒ′ parallel to ℒ breaks into 

two cases. If ℒ = [𝑎] we saw the only lines parallel to ℒ are the ℒ′ = [𝑎’], and there is only one 

of three, incident to P (namely 𝑎’ = 𝑥). If ℒ = [𝑚, 𝑏] we saw the only lines parallel to ℒ are 

theℒ′ = [𝑚, ℓ’], which is on (x,y) if 𝑦 = 𝐹(𝑥,𝑚, ℓ’), so AP3 is equivalent to the existence of 

unique solutions ℓ’ of equations 𝑦 = 𝐹(𝑥,𝑚, ℓ’). This is just T1. 

Thus, we have a pro-affine plane if (ℝ, F) is a ternary ring. The axiom  AP4  that a 3-point exist 

amounts to the condition that |ℝ| ≥ 2: 𝑖𝑓 ℝ = {𝑟} contains only one element then the plane 

contains only one point (r,r), while if ℝ contains 𝑟 ≠ 𝑠 the already (r, r), (r, s), (s, s) from a 3-

points (they are not all on a common line ℒ since if they are on ℒ[𝑎] we would have𝑟 = 𝑎 = 𝑠, 

and if they are on ℒ = [𝑚, ℓ] then 𝑟 = 𝐹(𝑟,𝑚, ℓ) = 𝑠). 
This construction is functorial in the sense that any isomorphism 𝜎:ℝ → ℝ̃ induces an 

isomorphism  

𝔸2(σ): 𝔸2 (ℝ)→𝔸2 (ℝ̃) defined by:  

(𝑥, 𝑦) → (𝜎(𝑥), 𝜎(𝑦)) 
[𝑚, ℓ] → [𝜎(𝑚), 𝜎(ℓ)] 

[𝑎] → [𝜎(𝑎)]                                                                       (2.3) 

𝔸2(ℝ) is built up from ℝ using only the ternary structure of ℝ, so any map preserving this 

ternary structure must also preserve the derived geometric structure [6, 7, 8]. For skeptics: 

𝔸2(𝜎) certainly is bijective from points to points and lines to lines and perverse incidence since 

(𝑥, 𝑦) 𝐼 [𝑎]  ⇔  𝑥 = 𝑎 ⇔  𝜎(𝑥) = 𝜎(𝑎)  ⇔ (𝜎(𝑥), 𝜎(𝑦)) 𝐼 [𝜎(𝑎)] and (𝑥, 𝑦) 𝐼[𝑚, ℓ]  ⇔
 𝐹(𝑥,𝑚, ℓ) = 𝑦 ⇔  𝐹(𝜎𝑥, 𝜎𝑚, 𝜎ℓ) = 𝜎(𝐹(𝑥,𝑚, ℓ)) = 𝜎 ⇔ (𝜎𝑥, 𝜎𝑦) 𝐼[𝜎𝑚, 𝜎ℓ]. The other 

requirements for a functor are trivially met: if σ=1 is the identity map from ℝ to ℝ by its very 

definition 𝔸2(𝜎) = 1 is the identity map on 𝔸2(ℝ), and similarly if  ℝ → ℝ → ℝ then by 

definition𝔸2(𝜏)  ⃘𝔸2(𝜎) = 𝔸2 (𝜏  ⃘𝜎). Thus, we have a functor.  

In short, we can construct affine planes in a natural way from ternary rings [8, 9]. 

We noticed before that we could construct ternary systems out of rings. Indeed, if (ℝ,+,∙) 
consists of a set ℝ with two binary operations + and ∙ we can form a ternary composition 

𝐹(𝑥,𝑚, ℓ) = 𝑥 ∙ 𝑚 + ℓ. 

The conditions on (ℝ,+,∙) in order that (ℝ, F) be ternary are: 

R1. An equation 𝑥 ∙ 𝑚 + ℓ = 𝑦 has unique solution ℓ 

R2.A pair of equations 𝑥 ∙ 𝑚 + ℓ = 𝑦, 𝑥’ ∙ 𝑚 + ℓ = 𝑦’ for 𝑥 ≠ 𝑥’ have a unique solution 

m,ℓ 

R3. An equation 𝑥 ∙ 𝑚 + ℓ = 𝑥 ∙ 𝑚’ + ℓ for 𝑚 ≠ 𝑚’ has a unique solution x. 

The construction of (ℝ, F) from (ℝ,+,∙) is functorial. In the next section, we will investigate 

when (ℝ,+,∙) can be recovered from (ℝ, F). 

 

3. From Affine to Projectiveand Vice Versa 
 

Another way to obtain projective planes is by ‘completing’ affine planes, a procedure we now 

describe. In the affine world, some intersections are missing: if ℓ ∥ 𝑚are distinct, parallel affine 

lines, then we should add a ‘point at infinity’ where they meet at last. Now, if ℓ ∥ 𝑚 ∥ 𝑛 then 

the same point should be added for the missing intersection ℓ ∩  𝑚 and the missing intersection 

𝑚 ∩  𝑛. So, one is not working with pairs of parallel lines, but with whole sets of pairwise 

parallel lines. 

Lemma 3.1. Let 𝔸be any affine plane. Then ∥is an equivalence relation [2, 3]. 
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Proof. This holds of 𝔸2(𝔽) for 𝔽 a skew-field, as one has a detailed description of parallelism 

from the proof of Proposition 1.3.2. But we want a general proof, a proof using only axioms 

AP1, AP2, AP3. Remember that in this abstract setting ℓ and 𝑚 are parallel ifℓ =  𝑚 or ℓ and 

𝑚 do not meet. We freely replace 𝔸 by an isomorphic plane where incidence is given by 

membership. There are three things to check:  

 Reflexivity. Every line ℓ satisfies ℓ = ℓ, so ℓ ∥ ℓ . 
 Symmetry. If ℓ ∥ 𝑚 then either ℓ =  𝑚 or ℓ ∩  𝑚 =  ∅; in either case 𝑚 ∥ ℓ.  

 Transitivity. Suppose ℓ ∥ 𝑚 and 𝑚 ∥ 𝑛; we show that ℓ ∥ 𝑛. If ℓ = 𝑛 we are done. 

Otherwise, we must prove ℓ ∩  𝑛 =  ∅ .So suppose not; by AP1 there is 𝑎 ∈  ℓ ∩
 𝑛. Now by AP2, there is a unique line parallel to 𝑚 and containing 𝑎; however, this 

applies to both ℓ and 𝑛. So actuallyℓ = 𝑛, a contradiction showing that ℓ ∩ 𝑛 =  ∅. 
Hence ℓ ∥ 𝑛, as desired. 

For ℓ an affine line, let[ℓ] be its equivalence class and call it itsdirection.  

Intuitively one should add a new point ‘at infinity’ for each direction; there will also be a line 

‘at infinity’. But ordinary, affine lines ℓ are now too short: we must force a projective line to 

contain the direction. This explains why we go through ℓ ̂below [3]. 

Definition 3.1. (Projectivization �̂� of an affine plane). Let 𝔸 =  (𝒫, ℒ ∈) be an affine plane.  

The projectivization of A is the incidence geometry �̂�  =  (�̂� , ℒ̂, ∈) defined as follows: 

 For each ℓ ∈ ℒ, let ℓ ̂ = ℓ ∪ {[ℓ]} be the ‘completion of line ℓ’;  

 Let ℓ∞ = {[ℓ] ∶ ℓ ∈ ℒ } be the ‘line of directions’;  

 �̂� = 𝒫 ∪ ℓ∞ = 𝒫 ∪ {[ℓ] ∶ ℓ ∈ ℒ }; 

 ℒ̂ = {ℓ̂ ∶ ℓ ∈ ℒ } ∪ {ℓ∞}. 

 
Figure 3.1. Completion of each affine line ℓ into ℓ ̂, without forgetting the line into infinity. 

 

Proposition 3.1. Let 𝔸 be an affine plane. Then �̂� is a projective plane. 

Proof: There are three axioms to check. 

PP1. Let 𝛼 ≠ 𝛽 be two points in �̂� . We see several cases. 

 If 𝛼 = 𝑎 ∈ 𝒫 and 𝛽 = 𝑏 ∈ 𝒫then by AP1 there is a unique line ℓ ∈ ℒcontaining both.  

Clearly 𝛼, 𝛽 ∈ ℓ̂. We also have uniqueness. If another line 𝜆 ∈ ℒ̂contains 𝛼 and 𝛽, then 

𝜆 cannot be ℓ∞, so 𝜆 =  �̂�, for some affine line 𝑚 ∈ ℒ. Then 𝑎, 𝑏 ∈  𝑚, so by 

uniqueness in AP1 one has 𝑚 =  ℓ and therefore 𝜆 = 𝑚 ̂ = ℓ̂. So,ℓ̂ is the only line of 

ℒ̂containing 𝛼 and 𝛽.  

 Suppose 𝛼 = 𝑎 ∈ 𝒫but 𝛽 ∈  𝒫 ̂ ∖  𝒫 =  ℓ∞ (the other case is similar). Then by 

definition, there is ℓ ∈  ℒwith 𝛽 = [ℓ]. Now by AP2there is a unique 𝑚 ∈ ℒ with 𝑎 ∈
𝑚 and 𝑚 ∥ ℓ. Then on the one hand 𝛼 ∈ �̂� , and on the other hand [ℓ] = [𝑚] ∈ �̂�.Now 

to uniqueness. If a line 𝜆 contains 𝑎 and 𝛽, then it cannot be ℓ∞. So, it is of the form �̂� 

for some affine line 𝑛. Now 𝛼 ∈ �̂� implies 𝑎 ∈  𝑛, and 𝛽 = [ℓ] ∈ �̂� implies [ℓ] = [𝑛], 
that is, ℓ ∥ 𝑛.  

By uniqueness in AP2 one has 𝑛 = 𝑚, and therefore 𝜆 = �̂� = �̂� .  

 Now suppose 𝛼, 𝛽 ∈ ℓ∞. Clearly ℓ∞ is the only line in ℒ̂ incident to both 𝛼 and 𝛽.  
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PP2. Trivial 

PP3. Obvious from AP3 and the definition of the projectivization. 

The converse operation of ‘downgrading from projective to affine’ involves choosing the 

line to be removed.  

Definition 3.2. [5, 7] (Affinization ℙ̌𝜆 of a projective plane). Let,ℙ = (𝒫, ℒ, ∈) be a 

projective plane. Fix one line 𝜆 ∈ ℒ.The affinization of ℙ , with respect to 𝜆, is the incidence 

geometry ℙ̌𝜆 = (�̌�, ℒ̌, ∈) defined as follows: 

 For each µ ∈ ℒ ∖ {𝜆}, set µ̌ = µ ∖ 𝜆;  

 �̌� = 𝒫 ∖ 𝜆;  

 ℒ̌ = {µ̌ ∶ µ ∈ ℒ ∖ {𝜆}} 
Not all our notation reflects dependence on 𝜆.  

 The isomorphism type of ℙ̌𝜆 depends on the line 𝜆 you chose to remove. Affinization 

is not uniquely defined, one may not say ‘the affinization’ without specifying 𝜆.  

(Cf. ‘’the projectivization’, which is well-defined.)  

 In particular, an arbitrary affinization of the projectivization of an affine plane 𝔸 

may depend on the choice of line removed from �̂�,and need not be isomorphicto 𝔸.  

 But, starting from projective ℙ and letting 𝔸 = ℙ̌𝜆, one has �̌� ≃ ℙ regardless of 𝜆. 

 

4. Projectivizing𝔸𝟐(𝔽), Affinizing ℙ𝟐(𝔽) 
 

Applying the projectivization/affinization procedures to 𝔸2(𝔽) and 𝑃2(𝔽) gives what one 

expects [5]. 

Proposition 4.1. Let 𝔽 be a skew-field. Then:  

(i) 𝔸2(𝔽)̂  ≃  ℙ2(𝔽);  
(ii) For any line, ℙ̌2(𝔽)  ≃  𝔸2(𝔽). 

Proof. 

(i) We describe an isomorphism. Let 𝐻0 ≤ 𝔽
3 be a vector plane and 𝑥 ∈ 𝔽3 be a vector 

not in 𝐻0.  

Let 𝐻1 =  𝑥 + 𝐻0, an affine translate of 𝐻0. Clearly,𝔸2(𝔽), 𝐻0, and 𝐻1 are 

isomorphic affine planes; in particular 𝔸2(𝔽)̂  and 𝐻1̂ are isomorphic projective 

planes. So, it suffices to see that 𝐻1̂and ℙ2(𝔽) are isomorphic, as follows. 

 
Figure 4.1. If 𝐿 ≰ 𝐻0 is mapped to 𝑎, while 𝐿′ ≤ 𝐻0 is mapped to [𝑥 +  𝐿′] 

 

Let 𝐿 ≤ 𝔽3 be a vector line. If 𝐿 ≰ 𝐻0, then 𝐿 will intersect 𝐻1in a point say 𝑎; map 𝐿 to 𝑎. If 

𝐿 ≤ 𝐻0, then there is no intersection, so 𝐿 should be mapped to a point at infinity.  

In the previous construction, such points were the equivalence classes (directions) of lines of 

𝐻1; so, map 𝐿 to[𝑥 + 𝐿], the direction of 𝑥 +  𝐿 which is a line of the affine plane 𝐻1. These 

maps are vector lines in 𝐹3 to points in �̂�1 . Now let 𝐻 ≤ 𝐹3 be a vector plane. If 𝐻 ≠ 𝐻0 then 
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𝐻 ∩ 𝐻1 is a line ℓ of the affine plane 𝐻1 ; map 𝐻 to ℓ̂ as in the projectivization construction. If 

on the other hand,𝐻 = 𝐻0 then map 𝐻 to ℓ∞.  

These maps vector planes in 𝐹3 to lines in �̂�1 .   

The proof finishes by the following steps: 

 Check that we have a bijection between points of ℙ2(𝔽) and points of 𝐻1̂ ;  

 Check that we have a bijection between lines of ℙ2(𝔽)and lines of𝐻1̂ ;  

 Check that these bijections preserve incidence. 
 

5. Conclusions 

 

Throughout this paper, we have examined the basic properties of affine and projective 

geometries. Firstly, we present the basic properties of affine and projective planes including 

their completion with each other, respectively, then we took fields and made both affine and 

projective geometries. Is shown that there can be constructed an affine plane 𝔸2(𝔽) from the 

ternary ring in a natural way. We constructed a projective plane given an affine plane and made 

an affine plane given a projective plane. Ordinary affine lines are not too short, so we must 

force a projective line to contain the direction. The converse operation of downgrading from 

projective to affine involves choosing the line to be removed.  
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