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Abstract 
 

Most of the dynamics displayed by highly complicated nonlinear systems also appear in simple nonlinear 

systems.  The purpose of the two-dimensional map with a strange attractor was for it to be a simple mapping 

that possesses similar properties to the Lorenz system and its Poincare map. Henon map is investigated, 

periodic points are found, and chaotic attractors are produced.  

In this paper, we will demonstrate an orbit of the Henon map with 10000 points, which vary on the initial 

conditions of the orbit and the values of the two parameters of the system. Known that the chaotic attractors in 

the Henon map are neither area filling (dimension 2) nor a simple curve (of dimension 1), the dimensions of 

these complicated geometries must be non-integer values between 1 and 2, and the chaotic attractors are then 

called fractals or strange attractors. Thee capacity or box-counting dimension dbox is the simplest possible way 

to measure such pathologies. We use The OGY (Ott, Grebogi, and Yorke) Method with the idea to make small 

time-dependent linear perturbations to the control parameter p in order to nudge the state towards the stable 

manifold of the desired fixed point. 

Acting on 500 equally spaced initial points (x0,y0) on a circle or a square, represent an numerical experiment 

which may give us some hints about why Jupiter's red spot and Saturn's hexagon-shaped hurricane seem to 

exist forever without contracting. 

 

Keywords: Discrete nonlinear systems, Henon map, chaotic attractor, box-counting dimension, fixed point, 

OGY method. 

 

1. Introduction 

 

Two-dimensional iterated system given by  
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named as Henon map, displays periodicity, mixing, and sensitivity to initial conditions [3]. The 

system can display hysteresis and bistability, which can be observed in the bifurcation diagrams 

[5]. The process starts from discrete nonlinear system    1 1, , ,n n n n n nx P x y y Q x y    with 

fixed point  1 1,x y , which can be transformed to the origin and the nonlinear terms can be 

discarded after taking a Taylor series expansion [1, 7]. The Jacobian matrix is given by:  

                                                         

 1 1,

P P

x y
J x y

Q Q

x y
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  
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(1.2) 

Definition 1.1. For two eigenvalues of Jacobian matrix (1.2), 1 2,  , a fixed point is called 

hyperbolic if both 1 21, 1   . If either 1 21 or 1   then the fixed point is called 

nonhyperbolic [2, 3].  
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The fixed point is stable as long as 1 1   and 2 1  , otherwise the fixed point is unstable. 

For the Henon map can be found by solving the equations given by 1n nx x   and 
1n ny y   

simultaneously. Therefore, period-one points satisfy the equations 21 ,x x y y x     , 

with solution 
       

2 2
1 1 4 1 1 4

,
2 2

x y
     


 

        
  
 
 

. The map has two 

fixed points of period one if and only if  
2

1 4 0    . Characteristic equation is 

2 2 0x     , then 
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 , then fixed points are source [1,7].  

Theorem 1.1. [2] For 1  , such that    
2

0

1
1

4
      

a)  0   , Henon map has no fixed point 

b)  0   , Henon map has exactly one fixed point 

c)  0   , Henon map has exactly two fixed points 

The choice of initial conditions is important in these cases as some orbits are unbounded and 

move off to infinity. For the map, different chaotic attractors can exist simultaneously for a 

range of parameter values of α. This system also displays hysteresis for certain parameter 

values. 

 

2. Orbit Diagram 

 

For    0,0.1 and 0.99,1    the map displays different behavior, the demonstration plots 

the first 20000 iterates of the Henon map from initial condition 
   0, 0 0,0x y 

.  

For 0.0001, 0.99959   ,   
2

0.000400168 01 4     , the map (1.1) has two fixed 

points of one period, 
  , ( 102.071, 102.029)97.971,97.9308A B  

, with eigenvalues 

 1.00964,0.99005
 and 

 1.01005, 0.98964
 respectively, the points are hyperbolic. For 

0.005, 0.99959   ,  
2

0.0200002 01 4    
 
the map (1.1) has two fixed point of 

one period , 
  , ( 14.1832, 14.1774)14.1012,14.0954A B  

, with eigenvalues  

 1.07278,0.93177
 and 

 1.07322, 0.93139
 respectively, it means that the points are 

hyperbolic. 
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a)                                                              b) 

c) 

Figure 2.1. Orbit Diagram of the Henon Map (1.1) a) 0.0001 =0.99959  , b) 0.005 =0.99959   

c) 0.1 =0.99959   

 

For different values of  such as 0.0001, =0.005, 0.1     and fixed 0.99959  , map 

(1.1) shows different forms of periodic behavior, for 0.0001  , Fig. 2.1. a), map (1.1) shows 

clean periodic behavior, for 0.005  , Fig. 2.1. b) the behavior is periodic with small tend to 

chaotic and for 0.1  , Fig. 2.1. c) the behavior of map (1.1) is chaotic periodic.  

The standard demonstration of chaotic attractor of Henon map (1.1) is shown in Fig. 2.1, for

0.4   and allow the control parameter, in this case  , to vary around a nominal value greater 

than 1[6], (for  0,1  doesn’t exist an chaotic attractor) let say, 1.2  ,  for which the map 

has two fixed points of one period, 
 

4 2
4,, 2 , ( , )

3 3
A B 

, with eigenvalues 
 0.28,1.78

 and 

 1,0.5
 respectively,  A is saddle point and B is nonhyperbolic, see Fig. 2.2. 

 
Figure 2.2. Iterative plot for the Hénon map (10000 iterations) when 1.2   and 0.4   with initial conditions

   0 0, 0,0x y 
 

 

In this work we plot different demonstrations of Fig. 2.2., using box counting method to measure 

different pathologies of the map (1.1) [4], continuing with attempts to control the chaos using 

the OGY method [2]! 

Using numerical experiment for fixed 0.4   and varied   there are fixed points with 

different number of periods, 0.2   two fixed points of periods one, 0.5   two fixed points 
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of period two and for 0.9   two fixed points of period four!  Using numerical experiment, 

we can say that the system exhibits chaotic behavior when 
 1.16,1.41 

and 0.4  . 
 

2.1. Box counting diagram: In order to get a better understanding of the attractor, and of such 

shapes in general, we will numerically compute some it its fractal dimensions, which are 

dimensions that are not restricted to integers [8]. 

Definition 2.1. The dimension of nS  (a bounded set) is a grid of n-dimensional boxes of 

side length   over S. Let  N   be equal to the number of boxes of the grid that intersect S. 

Then the scaling law for the dimension d give 
 ln ln

ln1/

N C
d






 , where C is a constant for all 

small  . The contribution of the second term in the numerator of this formula will be negligible 

for small   [3, 4]. This demonstration shows the orbit diagram (OD) and the box counting 

diagram (BC) of the Henon map (1.1). The chaotic attractors are neither area filling (dimension 

2) nor a simple curve (of dimension 1). Therefore, the dimensions of these complicated 

geometries must be non-integer values between 1 and 2, and the chaotic attractors are then 

called fractals or strange attractors. The capacity or box-counting dimension dbox is the simplest 

possible way to measure such pathologies [1,4]. It can be defined by: 

                                               

   
box

0

log log
lim lim

1
log log

k

N N k
d

k





 
 

   
   

   

                                           (3.1) 

where 
   N N k 

is the number of boxes with size 
 k

k
 


 

 covering the attractor. Here 

1k   is the box-counting step and 
 1  

 is the size of the box at the initial step 1k  .  Δ 

represents the sizes of the horizontal and vertical plot range, 

 1 right left top bottomx x y y     
. 

The method relies on covering the state space with a grid of boxes of side length   and counting 

the number of boxes that contain elements of the respective set. We draw pictures and counting 

boxes, and use the results to form an estimate of the dimension [2, 8]. 
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Figure 2.3. a) orbit diagram, b) box counting diagram with 1024 boxes, c) box counting diagram with 4096 boxes, 

of Henon map (1.1) for 1.2 =0.4, 3, the number of iterations 10000,n      the number of initial iterations to 

be dropped
drop 100n   

 

Of the 1024 boxes shown, in Fig. 2.3. b), 168 contain a piece of attractor and of 4096 boxes 

shown, in Fig 2.3. c), 392 contain a piece of attractor. The side length of the boxes is 

3 3
,

32 64
  

 respectively in the two plots.   

Fig. 2.4. presents a plot of  log N  versus 
1log 
, where the box-counting dimension is 

computed as the slope of the least-squares linear fit [8]. The box counting dimension would be 

extended as far as possible to the right, in order to make the best approximation possible to the 

limit. The slope in picture gives the value a) 31.29639 9.16208 10  , b) 
31.24857 6.11444 10   
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           a)  b)  

Figure 2.4. Dimension estimation plot of Henon map (1.1) for 1.2 =0.4, 3,     the number of initial iterations 

to be dropped
drop 100n  , the number of iterations 10000n  .   

 

2.2.Henon Map Starting with a Circle or a Square: This Demonstration shows iterates of the 

dissipative Henon map (1.1) for 0.4   and 1.2  , acting on 500 equally spaced initial points 

 0 0,x y
 on a circle or a square. The shape and the color of these spirals become very close to 

those of the true yin-yang spiral by imagining that the initial circle is filled in with black dots. 

This numerical experiment may give us some hints about why Jupiter's red spot and Saturn's 

hexagon-shaped hurricane seem to exist forever without contracting or expanding. 

 

a) b)  
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c) d)  

Figure 2.5. Iterates of the Henon map (1.1) acting on 500 equally spaced initial points     0 0, 0,0x y   on a circle 

or a square. a) for  1.2   and 0.4   starting from a cyrcle, b) for  1.2   and 0.4   starting from a square  

c) ) for  0.1   and 0.99959   starting from a square (see Fig. 1.1), d) for  0.5   and 0.99959   starting 

from a square  

  

3. Controlling Chaos in Henon map 

 

Ott, Grebogi, and Yorke used the Henon map to illustrate the control method named OGY 

Method [2, 7]. The two-dimensional iterated map function is given by (1.1) using the 

transformations 
1

,n n n nx X y Y


 
  , it becomes: 

                                                      
2

1 1,n n n n nX Y X Y X                                                                     

(3.1) 

The proof that (1.1) can be transformed into (3.1) is given in [?]. For 0.4   and 1.2  , the 

fixed points of period one are   0.8358,0.8358A  and  1.4358, 1.4358B   . For values of   

close to 0  in a small neighborhood of A, (1.1) can be approximated by a linear map: 

                     1 0 0 0 0J C , , , , C=
T

n S n S n n n S

P

Z Z Z Z Z X Y A Z
Q


    





 
 

        
 

 
 

                    

(3.2) 

Assume in a small neighborhood of A, we have: 

                                                         0 0 1 2K , K= ,
T

n SZ Z k k                                                       

(3.3) 

Substitute (3.3) into (3.2) to obtain: 

                                                            1 0 0J-CKn S n SZ Z Z Z                                                        

(3.4) 

The fixed point at  0SA Z  is stable if the matrix J − CK has eigenvalues with modulus less 

than unity. In this particular case, for 1 1   , 2 2 2 10.4 and 2.67156k k        

2 1 2.27156k k    and  2 2 2 1 2 10.4 and 0.67156 1.07156k k k k          , 
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respectively. The stable eigenvalues (regulator poles) lie within a triangular region. The 

perturbed Henon map becomes: 

                                        2

1 1 1,1 2 1,1 0 1,n n n n n n nX k X X k Y Y Y X Y X                                        

(3.5) 

Applying equations (3.1) and (3.5) without and with control, respectively, it is possible to plot 

time series data for these maps. 

 
Figure 3.1. Time series data for the Henon map (1.1), for 1.2 =0.4,   initial conditions    0 0, 0,0x y   

with and without control, 2 2 2r x y  . The control is activated after the 200th iterate. 

 

4. Conclusions 

 

In recent years, deterministic chaos has been observed when applying simple models to 

cardiology, chemical reactions, electronic circuits, laser technology, population dynamics, 

turbulence, and weather forecasting.  

In this work we studied the dynamical behavior of the Henon map. We show the numerical 

values of the parameters where the map has an attractor and compare the different kinds of 

dimension of the maps. Using numerical experiment, we can say that the system exhibits chaotic 

behavior when 
 1.16,1.41 

and 0.4  . We use the box counting diagram to find the 

dimension of the map, although there is no single method of doing this. Lyapunov dimension 

and correlation dimension with common tools for the analysis of attractors from experimental 

data, are the next step to compare the measurement! 

In the past, scientists have attempted to remove the chaos when applying the theory to physical 

models and for some systems, it has been found that the existence of chaotic behavior may even 

be desirable. The OGY technique is a feedback-control method. Some useful points to show 

about the algorithm are: the map can be constructed from experimental data. there may be more 

than one control parameter available and noise may affect the control algorithm.  A simple blood 

cell population model represents a nonlinear dynamical system, an application of the map (1.1), 

with the red cell count per unit volume in the n the time interval and number of cells destroyed 

and produced in one-time interval, an option where our work may will be useful! We 

investigated the numerical results of the maps and used computer programming Mathematica 

for generating graphs and computations. 
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