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Abstract 

 

In this paper, we present the equations of some conic sections and explore their applications 

in physics and astronomy. We investigate ellipses, parabolas, circles and hyperbolas that are 

essential in modeling a range of phenomena, from planetary orbits and satellite trajectories 

to projectile motion and optical systems. By discussing these geometric forms and their 

relationships with key concepts in physics, we examine how conic sections contribute to our 

understanding of celestial mechanics, gravitational forces and light reflection. This paper 

aims to provide a foundation for further research on the significance of conic sections in 

scientific exploration. 
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1. Introduction 

 

In this document, we'll take an intuitive approach to introduce and explain the classic definitions 

of conic sections. We'll then show how these definitions relate to the fields of physics and 

astronomy, making the concepts accessible and relevant. 

Conic sections have a very rich history that goes all the way back to ancient Greece. Parabolas, 

ellipses, hyperbolas, and circles all have their origins there. Conic sections have been applied 

to our modern world in devising new technologies and investigating the universe. Many 

advancements in technology and science have come from the application of conic sections in 

physics and astronomy.  

https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2839  
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A cone is a three-dimensional geometric shape that tapers smoothly from a flat, circular base to 

a single point called the vertex. Basically, there are two types of cones right circular cone 

and oblique cone. 

  Conic sections have been studied since the time of the ancient Greeks and 

were thought to be an important mathematical concept. In this paper, we shall 

be discussing the four basic conic sections, some properties, their equations, 

and their application. The eccentricity of a conic section is defined to be the 

distance from any point on the conic section to its focus, divided by the 

perpendicular distance from that point in the nearest direction. This value is 

constant for any conic section and can also define the conic section: 

 If 𝑒 = 0, the conic is a circle 

 If 𝑒 = 1, the conic is a parabola. 

 If 𝑒 < 1, it is an ellipse. 

 If 𝑒 > 1, it is a hyperbola. 

   The directrix of a conic section is a line perpendicular to the axis that defines a conic section 

along with the focus. The distance of the point location from the focus is proportional to its 

horizontal distance from the directrix and is the constant of proportionality. 

Ellipse is the set of points in a plane whose distances from two fixed points, 

called foci. The foci of the ellipse are the two reference points 𝑭𝟏 𝒂𝒏𝒅 𝑭𝟐 that 

help draw the ellipse. If points 𝑭𝟏 𝒂𝒏𝒅 𝑭𝟐that are foci (multiple foci) and d is 

a given positive constant then (𝒙, 𝒚) is a point on the ellipse if 𝒅 =  𝒅𝟏  + 𝒅𝟐 

as shown below: 

The standard form of the equation of an ellipse centered at (0,0) follows: 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

Figure 14.Applications of Conic Sections in Physics and Astronomy 

Figure 15.Cone  

Figure 16.ellipse 
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There are two such equations, one corresponding to the main horizontal axis and the other to 

the main vertical axis. The standard form of the equation of an ellipse with vertex at (h,k) 

follows: 

(𝑥 − ℎ)2

𝑎2
+
(𝑦 − 𝑘)2

𝑏2
= 1 

 

A circle is the set of points in a plane 

that are equidistant from a given point, called the center. 

𝑟2 = 𝑥2 + 𝑦2 or 𝑥2 + 𝑦2 = 𝑟2 

The equation of the circle in general form 

follows: 

𝑥2 + 𝑦2 +  𝑐𝑥 +  𝑑𝑦 +  𝑒 =  0 

 

 

 

    A hyperbola is the set of points in a plane 

whose distances from two fixed points, called foci, have an absolute 

difference that is equal to a positive constant. 

The standard form of the equation of the hyperbola with center at the origin 

and intercepts x (-a,0) and (a,0) follows, 

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1  

where 𝑎 > 0 and 𝑏 > 0.The standard form of the equation of the hyperbola with center at the 

origin and intercepts y (0,-b) and (0,b) follows, 

𝑥2

𝑏2
−
𝑦2

𝑎2
= 1 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0 

Figure 4.foci of ellipse 

Figure 5. CIRCLE 

Figure 6.Circle 

Figure 7. HYPERBOLA 
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Standard forms of equations of hyperbolas centered at (h, k): 

(𝑥 − ℎ)2

𝑎2
−
(𝑦 − 𝑘)2

𝑏2
= 1 

(ℎ ±  𝑎, 𝑘) 

and, 

(𝑦 − 𝑘)2

𝑏2
−
(𝑥 − ℎ)2

𝑎2
= 1 

(ℎ, 𝑘 ±  𝑏) 

    A parabola is the set of all points whose distance from a fixed point, called 

the focus, is equal to the distance from a fixed line, called the directrix. The 

point halfway between the focus and the directrix is called the vertex of the 

parabola. 

    The latus rectum is the chord of the parabola that is parallel to the directrix 

and passes through the focus 

 

    The standard form of the equation of a parabola with vertex 

at (h,k): 

Vertical parabola:                     𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘 

Horizontal parabola:                 𝑥 = 𝑎(𝑦 − 𝑘)2 + ℎ 

 

2. Some Application of conic section in physics and astronomy 
 

Conic sections play a crucial role in our understanding of physics and astronomy. They help us 

describe and predict many natural phenomena and the mechanics of celestial bodies. For 

instance, in physics, the paths of projectiles and particles moving under central forces can be 

represented by these shapes. In astronomy, conic sections are used to chart the movements of 

planets, comets, and other celestial objects, providing a framework for understanding how they 

travel through space. These shapes form the backbone of many concepts that explain the 

behavior of objects both on Earth and in the universe. 
 

2.1 Elliptical orbits: Elliptical orbits are paths followed by objects as they move around a central 

point, typically a star or a planet. These orbits are not perfect circles but rather ellipses. Their 

shape is characterized by eccentricity (e), which measures how close or far the orbit is from 

being a perfect circle. In elliptical orbits, the eccentricity value falls between 0 and 1. 

Figure 8. HYPERBOLA 

Figure 10..Parabola  

Figure 9. PARABOLA 

https://en.wikipedia.org/wiki/Conic_section
https://en.wikipedia.org/wiki/Chord_(geometry)
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 When eccentricity is 0, the orbit is a perfect circle. 

 As eccentricity approaches 1, the orbit becomes more elongated and less circular. 

Within elliptical orbits, there are two key points: 

 Apoapsis: the farthest point in the orbit from the center. 

 Periapsis: the closest point in the orbit from 

the center. 

 For orbits around a star, these points are referred to as 

aphelion and perihelion, respectively. In the case of 

planets orbiting the sun, these points play crucial roles 

in determining 

their orbital 

cycles. 

Elliptical orbits 

are 

commonplace in solar systems and constitute a 

significant aspect of Kepler's theory of planetary 

motion. This is the equation of the orbit and 

determines the path of body 𝑚2 around 𝑚1 , relative 

to 𝑚1. Where µ represents the standard gravitational 

parameter, ℎ is the specific relative angular 

momentum of the orbit, and e is a constant. 

𝑟 + 𝑟𝑒 𝑐𝑜𝑠𝜃 =
ℎ2

𝜇
, 

𝑟 =  
ℎ2

𝜇

1

1 + 𝑒 𝑐𝑜𝑠𝜃
 

 We see from this equation that 𝑚2  approaches 𝑚1 (𝑟 is smallest) when 𝜃 =  0 (except when 

𝑒 =  0, in which case the distance between 𝑚1 and 𝑚2  is constant). The closest approach 

extends along the abscissa and is called periapsis. The distance 𝑟𝑝 to periapsis, as shown in the 

figure, gives us the equation: 

𝑟𝑝 = 
ℎ2

𝜇

1

1 + 𝑒 
 

It is clear that 𝑣𝑟 =  0 at periapsis. The flight path angle 𝛾 is also illustrated in the figure. This 

angle represents the angle that the velocity vector 𝑣 =  𝑟` makes with the normal vector. 

𝑡𝑎𝑛𝛾 =
𝑣𝑟
𝑣⊥

 

𝑡𝑎𝑛𝛾 =
𝑒 𝑠𝑖𝑛𝜃

1 + 𝑒 𝑐𝑜𝑠𝜃
 

 Since 𝑐𝑜𝑠(−𝜃)  =  𝑐𝑜𝑠 𝜃, the trajectory described by 

the orbit equation is symmetric about the abscissa, as 

illustrated in the figure, which also shows a chord 

connecting any two points on the orbit. From the figure, 

we also observe the Latus rectum and semi-latus rectum. 

Otherwise, 𝑝 is called the orbit parameter. 

𝑝 =
ℎ2

𝜇
 

Figure 11. PATH 

Figure 12. PATH 

Figure 13. TRAJECTORY 
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The maximum value of 𝑟 is reached when the numerator takes its minimum value, which occurs 

at 𝜃 =  180°. The maximum value of r is reached when the numerator takes its minimum value, 

which occurs at 𝜃 =  180°. That point is called apoapsis, and its radial coordinate is denoted 

as 𝑟𝑎. 

𝑟𝑎 = 
ℎ2

𝜇

1

1 − 𝑒 
 

Let 2𝑎 be the distance measured along the abscissa 

from periapsis P to apoapsis A, as illustrated in the 

figure. 

From here we have: 

2𝑎 = 𝑟𝑝 + 𝑟𝑎 

𝑎 =
ℎ2

𝜇

1

1 − 𝑒2 
 

a is the major semi-axis of the ellipse. The 

solution of the equation for 
ℎ2

𝜇
 gives us: 

𝑟 =  𝑎
1 − 𝑒2

1 + 𝑒𝑐𝑜𝑠𝜃 
 

Point F from the figure represents the location of body 𝑚1, which is the origin of the 𝑟, 𝜃 polar 

coordinate system. The center C of the ellipse is the point extending along the middle of the 

path between apoapsis and periapsis. The distance CF from C to F is: 

𝐶𝐹 = 𝑎 − 𝐹𝑃 = 𝑎 − 𝑟𝑝 

But knowing that:𝑟𝑝 = 𝑎(1 − 𝑒) then 𝐶𝐹 = 𝑎𝑒 

𝑟𝐵 = 𝑎
1 − 𝑒2

1 + 𝑒 cos 𝛽
 

The projection of 𝑟𝐵 on the line of the apse is 𝑎𝑒, that is: 

𝑎𝑒 = 𝑟𝐵 cos(180 − 𝛽) = −𝑟𝐵𝑐𝑜𝑠𝛽 = −𝑎
1 − 𝑒2

1 + 𝑒 cos 𝛽
𝑐𝑜𝑠𝛽 

Solving the equation for 𝑒 = −𝑐𝑜𝑠𝛽 whence we have: 

𝑟𝐵 = 𝑎 

  Applying the Pythagorean Theorem: 

𝑏2 = 𝑟𝐵
2 − (𝑎𝑒)2 = 𝑎2 − 𝑎2𝑒2 

  At the point C we center a Cartesian 

𝑥𝑦 coordinate system. In terms of 𝑟 and 𝜃, we see 

that the 𝑥 coordinate of 𝑎 point in the orbit is: 

 

 

𝑥 = 𝑎𝑒 + 𝑟𝑐𝑜𝑠𝜃 = 𝑎𝑒 +(𝑎
1−𝑒2

1+𝑒 cos𝜃
)𝑐𝑜𝑠𝜃 = 𝑎

𝑒+𝑐𝑜𝑠𝜃

1+𝑒 cos𝜃
 

Figure 13. DISTANCE from periapsis P to 

apoapsis A 

 

Figure 15.POINT IN ORBIT 
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From here we have:
𝑥

𝑎
=

𝑒+𝑐𝑜𝑠𝜃

1+𝑒 cos𝜃
 

For the y coordinate we have: 

𝑦 = 𝑟𝑠𝑖𝑛𝜃 = (𝑎
1 − 𝑒2

1 + 𝑒 cos 𝜃
) 𝑠𝑖𝑛𝜃 = 𝑏

√1 − 𝑒2

1 + 𝑒 𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃 

Thus,
𝑦

𝑏
=

√1−𝑒2

1+𝑒 𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃 

Using these functions for the x and y coordinates we have:    

  

𝑥2

𝑎2
+
𝑦2

𝑏2
=

1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
[(𝑒 + 𝑐𝑜𝑠𝜃)2 + (1 − 𝑒2)𝑠𝑖𝑛2𝜃]

=
1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
[𝑒2 + 2𝑒𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 − 𝑒2𝑠𝑖𝑛2𝜃]

=
1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
[𝑒2 + 2𝑒𝑐𝑜𝑠𝜃 + 1 − 𝑒2𝑠𝑖𝑛2𝜃]

=
1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
[𝑒2(1 − 𝑠𝑖𝑛2𝜃) + 2𝑒𝑐𝑜𝑠𝜃 + 1]

=
1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
[𝑒2𝑐𝑜𝑠2𝜃 + 2𝑒𝑐𝑜𝑠𝜃 + 1] =

1

(1 + 𝑒𝑐𝑜𝑠𝜃)2
(1 + 𝑒𝑐𝑜𝑠𝜃)2 

From where: 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

This is the well-known Cartesian coordinate formula for an 

ellipse centered at the origin, with 𝑥 intercept at ±𝑎 and 𝑦 

intercept at ±𝑏. 

The speed varies depending on the point of the orbit (fastest 

at periapsis and slowest at apoapsis). 

 

2.2 Parabolic orbits : 

 

  If the eccentricity is equal to 1, then the orbit equation takes the form: 

𝑟 =
ℎ2

𝜇

1

1+𝑐𝑜𝑠𝜃
. 

  We recall that the parameter p of an orbit is given by the equation: 

𝑝 =
ℎ2

𝜇
 

Figure 16.POINT IN ORBIT 
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  Let's substitute that expression into the equation: 

𝑟 =
ℎ2

𝜇

1

1 + 𝑐𝑜𝑠𝜃
 

and we present it 𝑟 =  
2𝑎

(1 + 𝑐𝑜𝑠 𝜃)
 in a Cartesian system focused 

on the focus, as illustrated in the figure. Thus, 

𝑥
𝑝
2

+
𝑦

𝑝

2

= 2
𝑐𝑜𝑠𝜃

1 + 𝑐𝑜𝑠𝜃
+

𝑠𝑖𝑛2𝜃

(1 + 𝑐𝑜𝑠𝜃)2
 

𝑥
𝑝
2

+
𝑦

𝑝

2

=
2𝑐𝑜𝑠𝜃(1 + 𝑐𝑜𝑠𝜃) + 𝑠𝑖𝑛2𝜃

(1 + 𝑐𝑜𝑠𝜃)2

=
2𝑐𝑜𝑠𝜃 + 2𝑐𝑜𝑠2𝜃 + (1 − 𝑐𝑜𝑠2𝜃)

(1 + 𝑐𝑜𝑠𝜃)2

=
1 + 2𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠2𝜃

(1 + 𝑐𝑜𝑠𝜃)2
=
(1 + 𝑐𝑜𝑠𝜃)2

(1 + 𝑐𝑜𝑠𝜃)2

= 1 

From where: 

𝑥 =
𝑝

2
−

𝑦

2𝑝

2
, 

which is the equation of a parabola in a Cartesian coordinate system, the origin of which serves 

as the focus. 

 

 

Example:  

    The perigee of a satellite in a parabolic geocentric 

trajectory is 7000 km. Find the distance d between 

points P1 and P2 on the orbit which are 8000 km and 

16 000 km, respectively, from the center of the earth. 

     First, we calculate the angular momentum of the 

satellite by evaluating the orbit equation at periapsis, 

𝒓𝒑 =
𝒉𝟐

𝝁

𝟏

𝟏 + 𝒄𝒐𝒔𝜽
=
𝒉𝟐

𝟐𝝁
 

 
 

Figure 18. PARABOLIC geocentric trajectory 

from which 

ℎ = √2𝜇𝑟𝑝 = √2 ∙ 398600 ∙ 700 = 74700 𝑘𝑚
2/𝑠 

Figure 17. POINT IN PARABOILC ORBIT 
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To find the length of the chord 𝑃1𝑃2̅̅ ̅̅ ̅̅ , we must use the law of cosines from trigonometry, 

𝑑2 = 80002 + 160002 − 2 ∙ 8000 ∙ 16000𝑐𝑜𝑠∆𝜃 

The true anomalies of points 𝑃1 and 𝑃2 are found using the orbit equation: 

8000 =
747002

398600

1

1 + 𝑐𝑜𝑠𝜃1
→ 𝑐𝑜𝑠𝜃1 = 0.75 → 𝜃1 = 41.41° 

16000 =
747002

398600

1

1 + 𝑐𝑜𝑠𝜃2
→ 𝑐𝑜𝑠𝜃2 = −0.125 → 𝜃2 = 97.18° 

 

Therefore, ∆𝜃 = 97.18° − 41.41° = 55.78°, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑑 = 13270𝑘𝑚 

 

2.3 Hyperbolic trajectories in celestial mechanics:  In celestial mechanics, hyperbolic 

trajectories describe the paths of objects that pass near a massive body (such as a planet or star) 

and continue on an escape trajectory rather than being captured into an orbit. These trajectories 

are typically associated with objects such as 

comets, asteroids, or spacecraft performing gravity 

assists. 

From the figure we see that Spacecraft 1 follows a 

hyperbolic trajectory towards the central body, 

influenced by its gravitational field. The initial 

trajectory is represented by the dashed lines 

approaching the central body. 

As the spacecraft reaches the periapsis (𝑟𝑝), it is at 

its closest point to the central body. The 

gravitational pull of the central body significantly 

affects the spacecraft's path and velocity. After passing 

the periapsis, the spacecraft follows a new hyperbolic trajectory, indicated by the outgoing 

dashed lines. The spacecraft enters the central body's sphere of influence on a hyperbolic 

trajectory. 

The initial velocity and distance can be described by the hyperbolic trajectory equation: 

𝑟 =
1

1 + 𝑒𝑐𝑜𝑠𝜃
 

𝑣 = √2(𝜖 +
𝜇

𝑟
) 

The closest approach to the central body, determined by: 

𝑟𝑝 =
1

1 + 𝑒
 

After the gravity assist, the spacecraft exits on a new hyperbolic trajectory with a new velocity. 

The new velocity can be described by the same energy equation, considering the velocity gained 

from the gravity assist: 

𝑣 = √2(𝜖 +
𝜇

𝑟
) 

The hyperbolic excess velocity (𝑣∞)can also be calculated for the new trajectory: 

Figure 19. HYPERBOLIC trajectory 
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𝑣∞ = √
2𝜖

𝑚
 

 𝑟 is the distance from the focus (central body) to the spacecraft. 

 𝑒 is the eccentricity of the hyperbola (for hyperbolas, e > 1). 

 𝜃 is the true anomaly (angle from the closest approach). 

 𝜖 specific orbital energy  

 

3. Conclusion 

 

The uses that conics have in physics and astronomy are very important to bridge abstractions in 

mathematics with actual occurrences. Thereafter, the study of their properties continues in the 

search for enrichment of theory and also leads to technology and exploration in these fields. 

The fact that they get this continued study and application suggests that further discoveries are 

in the offing. They provide a means of connecting theoretical abstractions in mathematics to 

real-life technological advances being made in the attempts to understand and explore this 

universe. As we continuously explore the depths of space and unravel the mysteries of the 

physical world, the principles of conic sections will stay with our journey and further increase 

the horizons for human knowledge 
 

References 
 

[1] Izadpanah, F. (2015), A Suspension, Using Conic Sections in Persian Arch Structures, Journal of 

Engineering, 3(1), 160-168.  

[2] Curtis, H. D. (2020), Orbital mechanics for engineering students, Revised Reprint, Butterworth-

Heinemann. 

[3] Calvert, J. B. (2007), The Hyperboloid and its Applications to Engineering, Retrieved March, 30, 

2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


