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Abstract 
 

An F-open set is an open set with a finite boundary. Here it is defined the F-connectedness of a 

topological space as a space which cannot be expressed as a union of two non-empty disjoint F-open 

sets. It is shown that connectedness and F-connectedness are equivalent notions. 
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1. Introduction 
 

In [1], F-open sets of a topological space are presented as open sets with a finite boundary. In 

the same paper, F-closed sets are defined as closed sets with a finite boundary. By 

counterexamples it is shown that there exist open sets that are not F-open and closed sets which 

are not F-closed. 

By using F-open sets, on the same paper, the notion of F-continuity and F-compactness are 

introduced. Here, we present and study the notion of F-connectedness. As a consequence, this 

improves a result that characterizes connectedness by using coverings and chains. 

 

2. Preliminaries 
 

Through the text, for a topological space X and A X , by A , ( )int A  and A  we mean the 

closure, interior and boundary of A, respectively. 

We present the definitions of F-open sets and F-closed sets as well as some of their properties 

and consequences stated in [1]. 

 

Definition 2.1: An open subset A of a topological space X is called F-open if \A A  is a finite 

set. 

 

Definition 2.2: A closed subset B of a topological space X is called F-closed if \ ( )B int B  is a 

finite set. 

 

Since for an open set A and a closed set B we have that ( )A int A  and B B , then A is F-

open if and only if A  is finite and B is F-closed if and only if B  is finite. 

In [1], by counterexamples, it is shown that there exist open sets which are not F-open and 

closed sets which are not F-closed. 

The question that may arise is if the family of F-open sets forms a topology in X. The answer is 

negative, since the countable union of F-open sets may not be F-open (see Example 6 in [1]). 

It is also shown that a countable union of F-closed sets may not be F-closed and a countable 

intersection of F-open(F-closed) sets may not be F-open(F-closed). However, for a finite union 
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or intersection of F-open or F-closed sets we have the following theorem: 

 

Theorem 2.1: Let X be a topological space. Then: 

 A finite union of F-open subsets is F-open; 

 A finite union of F-closed subsets is F-closed; 

 A finite intersection of F-open subsets is F-open; 

 A finite intersection of F-closed subsets is F-closed. 

 

Since the complement of an F-open set is F-closed and the complement of an F-closed set is F-

open (see Theorem 1 in [1]), then: 

Remark 2.1: A set is F-open and F-closed (F-clopen) in a topological space X if and only if it 

is clopen in X. 

 

3. F-connectedness 
 

By using F-open sets we can define F-connectedness of a topological space. 

Definition 3.1: A topological space is F-connected if it cannot be expressed as a union of two 

nonempty disjointed F-open sets. 

If there exist two nonempty disjointed F-open sets A and B such that X A B  , then we say 

that A and B form an F-separation for X. 

Since all F-open sets are open, connectedness of a topological space implies F-connectedness. 

However, if the space is F-connected, there may still exist two open sets (at least one of which 

is not F-open) which separate the space. Therefore, F-connectedness may not imply 

connectedness. 

The following theorem, surprisingly, shows that F-connectedness and connectedness are 

equivalent. 

Theorem 3.1: A topological space is connected if and only if it is F-connected. 

Proof: The necessary condition is proved above. 

Suppose that X is F-connected but there exist two nonempty disjoint open sets A and B such 

that at least one of them is not F-open. Without loss of generality, let A be an open set which is 

not F-open. Since A and B are a separation for X, they are both clopen, therefore 

\A A A     which contradicts A not being F-open. □ 

So, the topological space X is F-connected if and only if the only nonempty F-clopen (clopen) 

set in X is X itself. 

Since continuous functions map connected spaces onto connected spaces and connectedness are 

inherited under homeomorphisms, by using Theorem 3.1 we have: 

Corollary 3.1: If X is an F-connected topological space and :f X Y  a continuous function, 

then ( )f X  is an F-connected subspace on Y. Moreover, if f  is an onto function, then Y is F-

connected. 

Corollary 3.2: If :f X Y  is a homeomorphism, then X is F-connected if and only if Y is 

F-connected. 

In [3] connectedness is characterized by using chains in open coverings of the topological 

spaces. 

Theorem 3.2: A topological space X is connected if and only if for any two points x and y in X 

and for any open cover U  of X, there exist 
1 2
, , ,

n
U U U  U  such that 

1
x U , 

n
y U  and 

1i i
U U


   , for all {1,2, , 1}i n   . 

In this case, the family 
1 2
, , ,

n
U U U  is called a chain in U  joining x and y. 

As a consequence, we have the following: 
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Theorem 3.3: A topological space X is F-connected if and only if for any two points x and y in 

X and for any cover U  of X consisting of F-open sets, there exist 
1 2
, , ,

n
U U U  U  such that 

1
x U , 

n
y U  and 

1i i
U U


   , for all {1,2, , 1}i n   . 

Proof: Let X be an F-connected topological space such that there exists an open covering U  of 

X consisting of F-open sets and two points ,x y X  for which there is no chain in U  joining 

them. 

Let { |A z X   there is a chain in U  joining x and z } . Then A is open (even though it may 

not be F-open). A is also closed (even though it may not be F-closed) since for z A , there 

exists 
z

U  U  such that 
z

z U  and 
z

U A   . 

So, A is clopen, therefore \B X A  is also clopen. From Remark 2.1, A and B are F-clopen 

such that ,x A y B , thus they form an F-separation for the topological space X which 

contradicts the F-connectedness of X. 

Conversely, let X be a topological space such that for every open covering U  of X consisting 

of F-open sets and any two points ,x y X , there exists a chain in U  joining them. Suppose 

that X is not F-connected, i.e., there exists an F-clopen set A and ,x y X  such that x A  and 

y A . Then { , \ }A X A  is a covering of X consisting of F-open sets for which there is no chain 

joining x and y, which contradicts the above statement. □ 

Theorem 3.3 improves the result in [3] by reducing the family of coverings of the space to only 

those coverings consisting of F-open sets. 

Notice that every topological space X has at least one cover consisting of F-open sets, that is 

{ }X . In cases when there is no other such cover (e.g., , 1n n   with the standard topology), 

Theorem 3.3 can be very useful. 
  

4. F-components and F-quasicomponents  
 

Components are the maximal connected sets of X. Similarly to components we can define F-

components. 

 

Definition 4.1: A X  is said to be an F-connected set if it is F-connected as a subspace of X. 

 

With other words, A X  is F-connected if it cannot be expressed as a union of two nonempty 

disjoint F-open sets in the space A with the relative topology. As a consequence, from Theorem 

3.1 we have:  

 

Proposition 4.1: A set A X  is F-connected if and only if it is connected. 

 

Definition 4.2: The maximal F-connected set of X containing x X  is called the F-component 

of x in X. 

 

As a direct consequence of Proposition 4.1 we have the following: 

 

Theorem 4.1: Components and F-components coincide. 

 

Since the image of a component under a continuous function lies on a component and 

homeomorphism induces a bijective mapping between components, as a consequence of 

Theorem 4.1 we have: 
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Corollary 4.1: If :f X Y  is continuous and 
X

C  an F-component of X, then there exists 

Y
C  an F-component of Y such that ( )

X Y
f C C . 

 

Corollary 4.2: Let CX and CY be the sets of F-components of topological spaces X and Y, 

respectively. If :f X Y  is a homeomorphism, then :F CX CY  defined by 

( ) ( ),F C f C C CX    is a bijection. 

 

A quasicomponent of x in a topological space X is the intersection of all clopen sets containing 

x. Similarly, we define the F-quasicomponent of x in X. 

 

Definition 4.3: The F-quasicomponent of x in a topological space X is the intersection of all F-

clopen sets containing x. 

 

Regarding Remark 2.1, we have the following consequence: 

 

Theorem 4.2: F-quasicomponents and quasicomponents coincide. 

 

Since any component is contained in a quasicomponent, by Theorems 4.1 and 4.2, we have: 

 

Corollary 4.3: For every F-component C of a topological space X there is an F-quasicomponent 

Q of the same topological space such that C Q . 

 

Using the properties of quasicomponents and Theorem 4.2, similar to the Corollaries 4.1 and 

4.2 we have: 

 

Corollary 4.4: If :f X Y  is continuous and 
X

Q  an F-quasicomponent of X, then there 

exists 
Y

Q  an F-quasicomponent of Y such that ( )
X Y

f Q Q . 

 

Corollary 4.5: Let QX and QY be the sets of F-quasicomponents of topological spaces X and 

Y, respectively. If :f X Y  is a homeomorphism, then :F QX QY  defined by 

( ) ( ),F Q f Q Q QX    is a bijection. 

 

Note that, like components and quasicomponenst, F-components and F-quasicomponenst form 

partitions of the topological space. 

 

In [2-4] quasicomponents are characterized by using chains in open coverings of the topological 

spaces. 

 

Theorem 4.3: Let X be a topological space and x X . The set ( ) { |Ch x y X   for every 

open cover U  of  X, there is a chain in U  joining x and y}  coincides with the quasicomponent 

( )Q x . 

 

Next, we improve this theorem by taking just the family of coverings which consist only of F-

open sets. 

 

Theorem 4.4: Let X be a topological space and x X . The set ( ) { |Ch x y X   for every U  

an open cover of X consisting of F-open sets, there is a chain in U  joining x and y}  coincides 



443 

 

with the quasicomponent ( ).Q x  

 

Proof: Let U  be a cover of X consisting of F-open sets and let ( ) { |Ch x y X 
U

 there is a 

chain in U   joining x and y} . As in the proof of Theorem 3.3, we can conclude that ( )Ch x
U

 is 

clopen. 

Next, we prove that if A is a clopen set in X, then there exist a cover U  of X consisting of F-

open sets such that ( )A Ch x
U

 for any x A . Since A is clopen, then A is F-clopen and 

{ , \ }A X AU  is an open covering of X consisting of F-open sets such that ( )A Ch x
U

 for 

any x A . 

So, A is clopen if and only if there is a covering U  of X consisting of F-open sets such that 

( )A Ch x
U

 for any x A . 

Then, for x X , the set ( ) { |Ch x y X 
U

U

 for every U  an open cover of X consisting of 

F-open sets, there is a chain in U  joining x and y } ( )Ch x , where the intersection is over all 

coverings U  consisting of F-open sets, is in fact the intersection of all clopen sets containing 

x, therefore ( ) ( )Ch x Q x . □ 

 

5. F-continuity and F-connectedness  
 

In the previous sections we proved some results about preserving F-connectedness under 

continuous functions. In [1] the notion of F-continuity is presented. 

 

Definition 5.1: A function :f X Y  is said to be F-continuous if 
1( )f U

 is an F-open set in 

X for every open set U in Y. 

 

It is shown that F-continuity implies continuity (Theorem 11 in [1]) but the converse may not 

hold (Example 17 in [1]). 

 

Since F-continuity implies continuity, we have: 

 

Corollary 5.1: If X is an F-connected space and :f X Y  is an F-continuous function, then 

( )f X  is an F-connected subspace of Y. Moreover, if f  is an onto function, then Y is F-

connected. 

 

Corollary 5.2: If :f X Y  is an F-continuous function and 
X

C  an F-component of X, then 

there exists 
Y

C  an F-component of Y such that ( )
X Y

f C C . 

 

Corollary 5.3: If :f X Y  is an F-continuous function and 
X

Q  an F-quasicomponent of X, 

then there exists 
Y

Q  an F-quasicomponent of Y such that ( )
X Y

f Q Q . 

 

In the same paper the notion of F-homeomorphism is presented. 

 

Definition 5.2: A bijective function :f X Y  is said to be an F-homeomorphism if f  and 

1f 
 are F-continuous. 
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Then, as a direct consequence of Corollary 5.1 we have: 

 

Corollary 5.4: If :f X Y  is an F-homeomorphism, then X is F-connected if and only if Y 

is F-connected. 

 

Corollary 5.5: Let CX  and CY  be the sets of F-components of topological spaces X and Y, 

respectively. If :f X Y  is an F-homeomorphism, then :F CX CY  defined by 

( ) ( ),F C f C C CX    is a bijection. 

 

Corollary 5.6: Let QX  and QY  be the sets of F-quasicomponents of topological spaces X 

and Y, respectively. If :f X Y  is an F-homeomorphism, then :F QX QY  defined by 

( ) ( ),F Q f Q Q QX    is a bijection. 
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