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Abstract 

 

The first elementary recursive real quantifier elimination procedure was based on cylindrical algebraic 

decomposition (CAD). A method of QE has a wide range of applications in many other areas. An interesting 

application in solving radical equations was presented through the examples. Also, an application in geometry, 

more precisely in the implicitization of parametric curves and surfaces was presented. A very complex example 

of implicitization of the Enneper surface was presented. This topic is significant in solid geometry; in problems 

of finding the intersection curve of two surfaces, it is the most convenient that one surface is presented by its 

implicit, while the other one is presented by parametric form. 

 

1. Introduction 

 

The first real quantifier elimination procedure was published by the author A. Tarski in [17]. 

During the 1970s G.E. Collins developed the first elementary recursive real quantifier 

elimination procedure [3,4] based on cylindrical algebraic decomposition (CAD). Its 

implementation was presented by D.S. Arnon [1]. After that period, CAD has undergone many 

improvements. 

In this paper, we applied the QE method to solving radical equations and geometry problems. 

In the existing literature, related applications of real quantifier elimination methods include 

computational geometry and solid modelling [15,16], while there is no application of QE in 

solving radical equations. 

A survey of the standard three implemented quantifier elimination methods was given in the 

paper [7] of authors A. Dolzmann, T. Sturm, and V. Weispfenning.  A partial cylindrical 

algebraic decomposition was implemented in the program QEPCAD. The virtual substitution 

method was implemented in REDLOG. A complete elimination procedure based on Grobner 

bases in combination with multivariate real root counting, was implemented within the package 

QERRC. In practice, when testing their applicability to various problems in science, 

engineering, and economics, a conclusion was that none of the implementations is superior to 

the others. It can, in contrast, be necessary to combine all three of them to solve a problem. A 

good geometry example of combining all three mentioned QE methods is presented in the paper 

[6]. More precisely, a very difficult problem of an implicitization of the Enneper surface was 

solved. 

Since it was shown that even trivial properties in plane geometry could have very difficult 

traditional proofs, applying the QE method to prove them could be very useful. This was a topic 

in the paper [18], where formulations of some geometry theorems were transformed into 

algebraic form and proved by QE. In this paper, we will present a different application of QE 

in geometry including in solid geometry. More precisely, a lot of examples of implicitization of 

parametric curves and surfaces were presented, including calculating the intersection point of 

two curves and the intersection curve of two surfaces.  

Since the problems of determining the intersection curve of two surfaces are important in solid 

geometry, the application of the QE method can be very significant. In solving these tasks, it is 
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the most convenient that one surface is presented by its implicit, while the other surface is 

presented by parametric form.  

Considering the QE methods in this paper, a QE algorithm for a theory of RCF presented in 

[18] was used. An interesting application of this method of quantifier elimination in geometry 

and in solving radical equations was illustrated through the numerous examples. One complex 

problem, a problem of an implicitization of the Enneper surface was solved in this paper. It is 

formulated in [6]. A solution presented in [6] combines all three standard QE methods; QE by 

virtual substitution, Hermitian QE, and QE by partial cylindrical algebraic decomposition, 

which shows the difficulty of a problem. 

 

2 Quantifier Elimination 

 

Let us show the example of a formula with quantifiers which is equivalent to a formula without 

quantifiers. 

Suppose we are given a formula   (a,b,c) in a set of real numbers R, 

 x(ax²+bx+c=0).  

 

    By the quadratic formula, we have the following equivalence: 

 

   (a,b,c)↔[(a≠0 b²-4ac≥0)   (a=0  (b≠0 c=0))], 

 

so   is equivalent to a quantifier free formula. 

 

Now let us introduce some basic definitions which are of importance for quantifier elimination. 

The language L is recursive if the set of codes for symbols from L is recursive. The first order 

theory T is recursive if the set of codes for axioms for T is recursive. An L-theory T is complete 

if for every sentence   in a language L the following holds: 

 

 T⊢   or  T⊢  .  

For each theory T arises question of its decidability, i.e. the existence of algorithm which for 

given 
LSent  gives an answer whether T⊢  or T⊬ . In the case of recursive complete 

theory in a recursive language, the answer is affirmative. 

A theory T of a language L admits quantifier elimination if for every formula   LForv   there 

exist a quantifier free formula   LForv  such that: 

 T⊢     vvv    

     

Every logic formula is equivalent to its following prenex normal form: 

 

 ),...,,,...,(... 1111 mnnn yyxxxQxQ  ,  

 

where   ,iQ  and is a formula without quantifiers in DNF; formula of the form x is 

equivalent to x ;    xxx   is a valid formula. Using the previous we see 

that an L-theory T admits quantifier elimination if and only if for every L-formula of the form 

 xyx , , where   is a conjunction of atomic formulas and negations of atomic formulas, 

exists equivalent quantifier free formula  y . 
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The examples of theories which admit QE are the theory of dense linear order (DLO), theory of 

algebraically closed fields (ACF) and theory of real closed fields (RCF). 

 

2.1 Theories of ACF and RCF:  The language of fields is L = {+, -,  , 0, 1, =}, where + and   

are binary function symbols, - is unary function symbol, 0 and 1 are constant symbols and = is 

relational symbol. 

We could axiomatize the class of algebraically closed fields by adding, to the axioms of fields 

(1), the axiom (2): 

1. Axioms of field 

2. for each n>1, 

 

   )0( 1

110110  



nn

nn xxxxxxxxxx  

 

A set A= (1,2) is a set of axioms of algebraically closed fields; for any term t of a language L 

there exist a polynomial ),...,( 1 nxxp  with coefficients in Z such that ),...,( 1 nxxpt   is a 

consequence of a set A. The set of axioms of algebraically closed fields allows quantifier 

elimination. 

As an example of ACF, we can take the field of complex numbers, which is the algebraic closure 

of the field of real numbers. 

In order to know how to eliminate quantifiers in a theory of algebraically closed fields, it is 

sufficient to know how to eliminate the existential quantifier in the formula of the form: 

 

)000( 1  tttx k , 

where it  represent an atomic formula of a language L. So, every it  is polinomial by x whose 

coefficients are polynomials by the other variables with coefficients in Z.  

The language of ordered fields is L = {+, -, , 0, 1, =, >}, where + and   are binary function 

symbols, - is unary function symbol, 0 and 1 are constant symbols and = and > are relational 

symbols. 

We could axiomatize the class of real closed fields by adding, to the axioms of ordered fields 

(1), the axioms (2), (3): 

1. Axioms of ordered field 

2. )( 22 yxyxyx   

3. )0( 122

210210  nn

nn xxxxxxxxxx , for any n ≥1 

Models of a set of axoms A = (1, 2,3) are real closed fields. The set A allows quantifier 

elimination; for any term t of a language L there exist a polynomial ),...,( 1 nxxp  with coefficients 

in Z such that ),...,( 1 nxxpt   is a consequence of a set A. 

The basic examples of a model of real closed fields are set of real numbers R and real closure 

of a set Q. The set A allows quantifier elimination. 

In order to know how to eliminate quantifiers in a theory of real closed fields, it is sufficient to 

know how to eliminate the existential quantifier in the formula of the form: 

 

 0000 11  mk qqppx , 

where ji qp ,  are polinomials by x whose coefficients are polynomials by the other variables 

with coefficients in Z. 
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3 Application of QE in solving Radical equations 

 

While there are applications of QE in the existing literature in many other areas, that is not the 

case in solving radical equations. This fact gives strength to our work, as we introduce a new 

approach to solving radical equations. 

We can apply a method of quantifier elimination to this problem successfully. Let us illustrate 

it through the examples.  

Example 1 Solve the following radical equation: 

√𝑥 − 16 +
1

2
√𝑥 + 16 =

10

√𝑥 − 16
 . 

 

Proof: Let us introduce the following notation: 

 

𝑦 = √𝑥 − 16,  𝑧 = √𝑥 + 16 
 

Now, the equation is equivalent to: 

 

(∃𝑦)(∃𝑧) (𝑦 +
1

2
𝑧 =

10

𝑦
˄ 𝑦2 = 𝑥 − 16 ˄ 𝑧2 = 𝑥 + 16 ˄ 𝑦 > 0 ˄ 𝑧 ≥ 0 ), 

 

where it holds 𝑥 − 16 > 0˄ 𝑥 + 16 ≥ 0. Let us evaluate z as a function of y from the equality 

𝑦 +
1

2
𝑧 =

10

𝑦
.  It follows: 

𝑧 =
20 − 2𝑦2

𝑦
 

Now we substitute the previous value of z into the equality 𝑧2 = 𝑥 + 16. We have: 

 

(20 − 2𝑦2)2

𝑦2
= 𝑥 + 16 

After some basic calculation, the previous equality is equivalent to: 

 

4𝑦4 − 96𝑦2 − 𝑥𝑦2 + 400 = 0 
 

Let us introduce the following notation: 

 

𝑡1 ≡ 4𝑦4 − 96𝑦2 − 𝑥𝑦2 + 400, 𝑡2 ≡  𝑦
2 − 𝑥 + 16 

 

We will apply the algorithm of QE to the following formula: 

 

(∃𝑦)(𝑡1 = 0 ∧ 𝑡2 = 0 ∧ 𝑦 ≠ 0) 
 

Using the method for QE we have 

𝑇1 = 𝐴2𝑡1 − 𝐴1𝑦
2𝑡2, 

 

where coefficients are equal 𝐴1 = 4, 𝐴2 = 1. Our formula is equivalent to: 

 

𝐴2 ≠ 0 ∧ (∃𝑦)(𝑇1 = 0 ∧ 𝑡2 = 0 ∧ 𝑦 ≠ 0), or equivalently 

 

1 ≠ 0 ∧ (∃𝑦)(3𝑥𝑦2 − 160𝑦2 + 400 = 0 ∧ 𝑦2 − 𝑥 + 16 = 0 ∧ 𝑦 ≠ 0) 
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When we combine the two equalities from the previous formula we get a quadratic equation 

by a variable 𝑥. A resulting value of a variable 𝑥 follows easily: 

𝑥 = 20  or  𝑥 = 49
1

3
 

 

Since we have a condition 𝑥 ≤ 26, the only solution is 𝑥 = 20.  

Example 2 Solve the following radical equation: 

 

√2 − 𝑥
3

= 1 − √𝑥 − 1 . 
 

Proof: Let us introduce the following notation: 

𝑦 = √2 − 𝑥
3

,  𝑧 = √𝑥 − 1 

 

Now, the equation is equivalent to: 

 

(∃𝑦)(∃𝑧)(𝑦3 = 2 − 𝑥 ˄ 𝑧2 = 𝑥 − 1 ˄  𝑦 = 1 − 𝑧 ˄ 𝑥 − 1 ≥ 0 ˄ 𝑧 ≥ 0) 
 

We can eliminate a variable y directly by substitution by a variable z. So, we have a formula 

that is equivalent to the previous one: 

 

(∃𝑧)(−3𝑧2 + 𝑧(𝑥 + 2) − 𝑥 + 1 = 0 ˄ 𝑧2 − 𝑥 + 1 = 0  ˄ 𝑥 − 1 ≥ 0 ˄ 𝑧 ≥ 0) 
  

Let us introduce the following notation: 

 

𝑡1 ≡ −3𝑧2 + 𝑧(𝑥 + 2) − 𝑥 + 1, 𝑡2 ≡  𝑧
2 − 𝑥 + 1 

   

After the application of QE algorithm by a variable z, we get a following equivalent formula: 

 

(∃𝑧)(𝑧(𝑥 + 2) − 4𝑥 + 4 = 0 ˄ 𝑧2 − 𝑥 + 1 = 0  ˄ 𝑥 − 1 ≥ 0 ˄ 𝑧 ≥ 0) 
 

We can express a value of 𝑧 from the first inner formula and substitute it into the second inner 

formula. After some basic calculation a result 𝑥 = 1 follows easily. 

We can also apply the same method to the radical equations with a parameter.  

Example 3 Solve the following radical equation: 

 

√𝑎 + 𝑥 − √𝑎 − 𝑥

√𝑎 + 𝑥 + √𝑎 − 𝑥
=
𝑥

𝑎
 , 𝑎 ≠ 0, 𝑥 ≠ 0, 𝑎 > 0 

 

Proof: Let us introduce the following notation: 

𝑦 = √𝑎 + 𝑥,  𝑧 = √𝑎 − 𝑥 
 

Now, the equation is equivalent to: 

 

(∃𝑦)(∃𝑧) (
𝑦 − 𝑧

𝑦 + 𝑧
=
𝑥

𝑎
˄ 𝑦2 = 𝑎 + 𝑥 ˄ 𝑧2 = 𝑎 − 𝑥 ˄ 𝑎 + 𝑥 ≥ 0 ˄ 𝑎 − 𝑥 ≥ 0 ˄ 𝑦 ≥ 0 ˄ 𝑧 ≥ 0) 

 

When we substitute a variable x by a variable z and apply the QE algorithm, we get only one 

result: 𝑥 = 𝑎. 
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4 Application of QE in Geometry 

 

There are a lot of geometry problems that cannot be solved using the quantifier elimination 

method. The main idea of this method is to eliminate quantifiers one by one. So, the problem is 

that the elimination of one quantifier can increase the degree of other quantified variables. Also, 

a large number of variables can represent a problem. To solve this problem, we combined a 

method for QE first presented in [18] and a substitution method in our paper. 

 

4.1 Implicitization of Parametric curves and surfaces: It is determined that the implicit 

representation is the most convenient for determining if a given point belongs to a specific curve 

or surface. This motivates the search for finding the methods of converting from the parametric 

representation to the implicit one. The curves and surfaces which can be expressed implicitly 

in terms of polynomial equations are the algebraic curves and surfaces.  

Now we will illustrate the implicitization of a planar curve presenting the example of a 

parametric quadric. Suppose we are given a general parametric form of the quadric:  

 

01

2

2

01

2

2

btbtby

atatax




 

 

We will find an implicit form by the method of quantifier elimination. So, we will apply QE 

to the following formula, 

 00 01

2

201

2

2  ybtbtbxatatat  

 

and get the formula equivalent to the previous one: 

 

  001

2

20220221221  ybtbtbbabayaxbbabatt  

 

We can see that the first inner formula is linear by t. Let us introduce the following notation: 

 

1221 babaA  , 

2002 babaB   

It follows: 

ByaxbAt  22
, 

or equivalently, 

A

Byaxb
t


 22  

Now we substitute a value of t into the first coordinate equation: 

 

0
22

1

2

22
2 a

A

Byaxb
a

A

Byaxb
ax 










 
  

 

After some basic calculation we get the resulting implicit form: 

 

    .0222 2

2

2

0121

2

2

2

21222

2

2

23

2

22

22  BaAaABayAaaBaxAAbaBbaxybayaxba  
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Now we will illustrate the implicitization of a rational parametric curve presenting an example 

of a rational parametric quadric. Suppose we are given a general parametric form of a rational 

quadric:  

01

2

2

01

2

2

01

2

2

01

2

2

dtdtd

btbtb
y

dtdtd

atata
x











 

 

We can write the previous equations in the following form: 

 

     

      0

0

0011

2

22

0011

2

22





aydtbydtbyd

axdtaxdtaxd
 

 

Without loss of generality, we will solve this problem for concrete values of the coefficients: 

 

32

43

32

542

2

2

2

2











tt

tt
y

tt

tt
x

, 

or equivalently, 

     

      043123

053422

2

2





ytyty

xtxtx
 

 

When applying QE method to the previous two formulas, we eliminate t and get a resulting 

implicit form: 

.0159617550 22  yxyx  

 

Now we will present two examples of implicitization of parametric surfaces. The examples 

are given below. 

 

Example 4 Suppose we are given the following description of a torus, 

    222

1

2

2

22

21 ,,,, yxurrzuurrzyx   

 

and we need to find its implicit form. 

 

Proof: We will apply quantifier elimination method in order to solve this example. So, we are 

given the following formula: 

 

  222

1

2

2

22 yxurrzuu  . 

 

When applying QE, it is equivalent to: 

 

   002 22

2

222

11

2

2

2

1

222  zryxururrrzyxu  
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We can see that the first inner formula is linear by u. So, we can express a value of u, 

 

1

2

2

2

1

222

2r

rrzyx
u


  

and substitute it into the equation 
2

2

22 rzu  . After some basic calculation, we get an implicit 

form of a torus: 

 

.022222

222222

2

2

2

1

4

2

4

1

2

2

22

2

22

2

22

1

2

2

1

22

1

22

1

2222222444





rrrrrzryrxrz

rzryrxzyzxyxzyx
 

 

 

Example 5 Suppose we are given a parametric form of the unit sphere, 

 

 

 

  ,
1

2
,

1

2
,

1

1
,

22

22

22

22

ts

t
tsz

ts

s
tsy

ts

ts
tsx












 

and we need to find its implicit form. 

 

Proof: We will apply quantifier elimination method in order to solve this example. Let us 

rewrite the coordinate formulas first. 

 

 

02

02

011

22

22

222







zzstzt

syysyt

sxxsxt

 

 

Obviously, when we combine the second and the third equation we have the equality: 

y

sz
t  . 

 

Now we will denote the first equation by 01 t  and the second one by 02 t . Our goal is to 

eliminate a parameter t from the following formula: 

 

 00 21  ttt . 

 

When we apply the algorithm for QE we get that the previous formula is equivalent to the 

following one: 
 00222 2  tyssxt  

 

From the first inner formula of the previous one directly follows: 

  .
1

1



x

y
syxs  
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Since it holds: 
y

sz
t  , we can substitute a value of s and get the following: 

.
1


x

z
t  

 

Now we substitute values of s and t into the third equation (equivalent to a coordinate equation 

for a variable z). It follows: 

 

1x

z
.

1
2

11
1

22








































x

z

x

z

x

y
z  

 

After some basic algebraic calculation, the previous equation is equivalent to the following one: 

,1222  zyx  

which represent an implicit form of the unit sphere.  

 

 

We can point out that some curves do not have a parametric form; for example, cubic curves. 

Only singular cubic curves are parameterizable. Also, it is not possible to apply the QE method 

described in this paper to find the intersection point of a cubic curve in a general form and a 

line. If we would try to apply this method all terms would be canceled. The cubic curves are not 

significant in geometry, but they have a very important application in cryptography. 

If we consider a reverse process, converting an equation of a surface from an implicit to a 

parametric form, the general problem is algorithmically unsolved.  

The following example 6 is very difficult and represents an implicitization of the Enneper 

surface. A problem was formulated in the paper [6]. The author A. Dolzmann found an 

automatic solution of an implicitization of the Enneper surface by combining all three standard 

QE methods; QE by virtual substitution, Hermitian QE, and QE by partial cylindrical algebraic 

decomposition. The simplification methods were also used in [6] which shows the complexity 

of this problem. 

A presented solution in this paper is original. A QE method presented in [18] was used. Also, 

it was necessary to combine the equations and use algebraic simplification in order to find a 

solution. 

 

Example 6 Suppose we are given a parametric form of the Enneper surface: 

 

2

2

2

1

2

2

12

3

2

3

1

2

211

33

33

33

xxz

xxxxy

xxxxx







 

and we need to find its implicit form. 

 

Proof: We will consider the second and the third equation and apply QE algorithm. 

033

033

2

1

2

22

2

2

12

3

21





zxxt

yxxxxt  
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A resulting inner formula is the following one: 

0396 222

2

11  yzxxxxT
 

Now we apply QE on the first and the third given coordinate equation. 

033

03

2

1

2

22

2

21

3

11





zxxt

xxxxt  

 

A resulting inner formula is the following one: 

 

0396 11

2

21  xzxxxx
 

Now we combine the previous two resulting formulas. It follows: 

 

0333 21

2

2

2

1  yxxxzxzxz
 

When we express a variable 
2x  from the third given equation (for z) and substitute it into the 

previous formula we get: 

09969 21

22

1  yxxxzzxz
 

Now we will consider the first two equations given in the example and apply QE algorithm. 

 

033

033

2

2

12

3

22

1

2

21

3

11





yxxxxt

xxxxxt
 

 

A resulting inner formula is the following one: 

 

03128 1221

3

21  yxxxxxxx
 

Now we combine the previously obtained equations and get the following formula: 

 

0334 1221  yxxxzxx
 

If we substitute a value from the previous equation 

z

xxyx
xx

4

33 21
21




                                                 

into the following two equations (previously obtained), 

0396 11

2

21  xzxxxx
 

0396 222

2

1  yzxxxx
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we get the following equivalent system: 

9𝑥1𝑥2𝑦 − 9𝑥2
2𝑥 + 18𝑥1𝑧 − 2𝑥1𝑧

2 − 6𝑥𝑧 = 0 
 

9𝑥1𝑥2𝑥 − 9𝑥1
2𝑦 − 18𝑥2𝑧 − 2𝑥2𝑧

2 + 6𝑦𝑧 = 0 
 

Now we apply the same substitution for 𝑥1𝑥2 into the previous system; so we can express the 

values of 
2

2x  and 
2

1x from the equations of a system. When we substitute these values of  
2

1x

and 
2

2x respectively, into a previously obtained formula,  

 

3𝑧 − 𝑥1
2𝑧 − 𝑥2

2𝑧 − 3𝑥1𝑥 + 3𝑥2𝑦 = 0 

 

we get a resulting system that is linear by variables 𝑥1 and 𝑥2: 
 

−81𝑥𝑦𝑥1 + (8𝑧
3+72𝑧2 + 27𝑥2 + 54𝑦2)𝑥2 = 18𝑦𝑧

2 − 54𝑦𝑧 
 

(8𝑧3−72𝑧2 − 27𝑦2 − 54𝑥2)𝑥1 + 81𝑥𝑦𝑥2 = −18𝑥𝑧
2 − 54𝑥𝑧 

 

Since it represents a system of two linear equation by the unknown variables 
1x  and 

2x , we 

can solve it easily and a resulting formula follows. 

 

4.2 Intersection of two curves or two surfaces:  Now we will present the application of QE 

method in finding the intersection point of two curves. It is presented in the following example 

7. 

 

Example 7 Suppose we are given the following circle and elliptic line (ellipse): 

 

   

1
24

:

1:

2

2

2

2

2

22

1





yx
l

qypxl

 

If we are given that the two curves have only one intersection point, evaluate coordinates of that 

point. 

 

Proof: Let us rewrite a given equations first, 

 

.0164

0122

22

2222





yx

qppxxqyy
 

We will write a quantified formula in which we express the existence of the intersection point: 

 

 01640122 222222  yxqppxxqyyyx  

 

If we apply the QE method to the inner formula we will decrease a power of a variable y. So, 

the previous formula is equivalent to: 

 

 016401244883 22222  yxqpqypxxyx . 

 

Now we apply QE method by a variable x to this inner formula of a previous one: 
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 016401244883 22222  yxqpqypxxx . 

It follows that the inner formula is equivalent to: 

 

 0164015223 22222  yxqppxqyyx . 

 

The first subformula of a matrix formula represent a quadratic equation by a variable y. The 

quadratic equation has a unique solution if a discriminant D is equal zero. So, we will set up the 

equation: 

    0152342 222
 qppxqD  

After some basic calculation we get a value of a coordinate x: 
p

qp
x

6

4543 22 
 . 

Similarly, we can evaluate a value of a coordinate y:  
q

qp
y

6

93 22 
  

Note that we can also solve a problem when two given curves have more than one intersection 

point or have no intersection points.  

QE method can be also applied in the problems of determining the intersection curve of two 

surfaces, which represents a very important problem in solid geometry. In solving of these tasks, 

it is the most convenient that one surface is presented by its implicit, while the other surface is 

presented by parametric form. We will illustrate this by the following example. 

 

Example 8 Find the intersection of an upper half of a sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 and a cone  

𝑥2 + 𝑦2 = 𝑧2. 
 

Proof: We will use a parametric form of a cone in this example: 

 

𝑥 = 𝑟𝑐𝑜𝑠𝜑 

𝑦 = 𝑟𝑠𝑖𝑛𝜑 

                            𝑧 = 𝑟,          0 ≤ 𝜑 ≤ 2𝜋     
 

When we substitute values for coordinates 𝑥, 𝑦, 𝑧 into the equation of a sphere we get: 

 

𝑟2𝑐𝑜𝑠2𝜑 + 𝑟2𝑠𝑖𝑛2𝜑 + 𝑟2 = 1 
 

We can find a value of r from the previous equation: 

𝑟 =
1

√2
 

Obviously, a resulting intersection represents the following circle line: 

𝑥2 + 𝑦2 =
1

(√2)2
 

with a centre  (0, 0, 1/√2).  
Similarly, we can find the intersection of a torus and a sphere. We can see in the Example 4 

how complex an implicit form of a torus is. So, we will use its parametric form. After some 

basic calculation we get a resulting formula for 𝑢: 
 

𝑢 =
𝑅2−𝑟1

2−𝑟2
2

2(𝑟1−𝑟2)
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Now we can substitute the previous value of 𝑢 into the first inner formula of a torus and find a 

value of 𝑧. A resulting intersection formula follows easily.  

 

4 Conclusion 

 

Considering the application of quantifier elimination, some interesting examples of solving 

radical equations were presented in this paper. Also, the QE method could be very useful in 

finding an implicit form of the parametric curves and surfaces. A very complex example of 

calculating an implicit form of the Enneper surface was presented as a result. Its complexity can 

be seen in a different approach from the other authors [6].  In this paper, some examples of 

calculating the intersection point of two curves or the intersection curve of two surfaces were 

shown. The importance of finding the intersection curve in solid geometry motivated us to 

investigate the conversion of a parametric representation of a surface into its implicit form by 

QE methods presented in [18]. 

Unfortunately, there are a lot of geometry problems that cannot be solved using any quantifier 

elimination method. Even when we combine a method for QE and a substitution method, it is 

impossible to calculate a result for a large number of geometry problems. The main reason is 

that the elimination of one quantifier can increase the degree of other quantified variables. Since 

this topic is very significant, it has a lot of potential for future work. 
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