UDC: 004.774:004.415.53
Professional paper

TESTING STRATEGIES IN MVC-BASED APPLICATIONS: MODEL,
VIEW, AND CONTROLLER STRATEGIES

Elira ABDURAMANI, Agon MEMET [0000-0002-6624-3856] Florim |DRIZ | [0000-0001-7514-3262],
Shkurte LUMA-OSMAN | [0000-0003-2464-249x]

Department of Computer Sciences, Faculty of Natural Sciences and Mathematics, University of Tetova, Tetova, North Macedonia
e.abduramani320043@unite.edu.mk

Abstract

Much like other modern technologies, automated testing is rapidly advancing in today’s fast-changing software
landscape. Keeping up with and understanding the numerous emerging tools become essential. This review
offers a critical evaluation of three automated modern frameworks designed for unit testing MV C architectures.
Most tools cover only one layer of the MVC - Model, View and Controller - so reliable unit tests are a challenge.
Three complementary solutions that together promise full-stack coverage are reviewed here. With ModelWeb,
simple flowchart model user interactions are converted to run BDD-Selenium tests with maintainable scenarios.
WebExplor is an Al-powered curiosity agent that navigates dynamic Uls to reveal small, hard-to-find bugs.
Finally, we review ten top REST API testing tools and assess their performance in driving real world services,
showing strengths in automation and weaknesses in call sequencing and input generation. Comparing each
approach's methodology, coverage, and maintainability, we find that no tool can stand alone. Mixing model-
based clarity, intelligent exploration, and stringent API validation instead provides the strongest and most
adaptive path towards end-to-end MVC testing.

Keywords: MVC Architecture, Web Application Testing, Test Automation Tools, Al-Driven Testing.

1 Introduction

The architectural pattern made out of Model, View and Controller (MVC) powers a vast number
of frameworks like ASP.NET MVC, Spring MVC and Angular by separating concerns in this
order data (Model), Ul(View) and logic (Controller). Automated unit tests in CI/CD pipelines
are essential for catching regressions as soon as possible but manual test writing can be very
time-consuming and not very reliable while considering that Uls are evolving in a record time.
Many tools used for testing focus only on one of the layers-models, views or controllers in
which case they leave coverage gaps. This critical review asks the guestion: How can teams
achieve broad, maintainable unit tests across all the MVC layers without needing excessive
effort? We examine and analyze three different frameworks:
e ModelWeb: Converts flowcharts into BDD scripts covering models, view and
controllers.
e \WebExplor: Uses reinforcement learning to discover workflows and state transitions.
e RESTTful Tools: Performs exhaustive AOI-driven validation of controller and model
logic.
By analyzing how each tool generates tests, what parts of the application it covers, how well
the aforementioned tool fits into CI/CD pipelines and how it handles changes we find that each
of them have unique strengths. Later on, we suggest a combined approach that uses flowcharts
for clarity and understanding, smart Ul exploration and strong API testing to fully cover the
MV C applications.

https://doi.org/10.62792/ut.jnsm.v10.i19-20.p3197 342

https://doi.org/10.62792/ut.jnsm.v10.i19-20.p3197

2 Related Work

ModelWeb, was introduced as a model driven testing toolset that empowers testers to specify
web application behavior through flowchart models [1]. A tester uses a graphical editor to
model user actions and these visual models formally capture the intended flow of interactions
for each functionality. ModelWeb then proceeds to translate each flowchart into BDD (behavior
driven development) scenarios expressed in the Gherkin syntax (Given-When-Then) [1].
Consequently ModelWeb reduced the time needed to create texts by 27-41% compared to
traditional manual scripting, at the same time, it enabled users to generate 51-113% more test
scenarios. Italso maximizes its testing throughput while minimizing required skill sets. Despite
its undeniable advantages, ModelWeb possesses some certain weaknesses common to model-
based testing approaches. The framework’s effectiveness hinges on the quality of the user-
defined flowchart models. If the testers model does not include certain pages or paths, those
paths or parts of the app will not be tested.

Modern web apps often update their content dynamically (e.g with JavaScript), which static
flowcharts in ModelWeb struggle to represent. As the app changes, testers must update the
flowcharts and tests which can result to be really time-consuming, especially for large systems.
ModelWeb has only been tested on small demo apps in controlled settings. While early results
have been promising, it’s performance in a large, real-world MV C systems and CI1/CD pipelines
still needs to be proven. When compared to ModelWeb’s manual modeling, WebExplor [2]
presents a total opposite automatic web testing framework which uses curiosity-driven
reinforcement learning (RL) to autonomously explore web applications. It treats the application
as an environment in which an agent navigates through the user interface (Ul), very similar to
a human tester but guided by an intelligent algorithm. This approach defines states (based on
the web page DOMs) and actions (clicking links, filling forms) for the RL agent and uses a
curiosity reward to encourage exploration of unseen states. WebExplor incrementally builds an
internal model of the web application’s navigation structure during the exploration. This learned
model serves as a high-level guide, tracking the visited states or pages to reduce redundant
actions and prioritize the interactions that are yet unexplored. Anyway, in evaluations of sic
real-world open-source web projects and a commercial SaaS application, WebExplor it found
more bugs, covered more code and tested more efficiently compared to state-of-the-art methods.
The RL-driven approach proved to be especially good at discovering complex bugs that
normally require long sequences of action and specific inputs-often missed by random testing.
WebExplor found 12 previously unknown failures in a production web app, all of which were
later confirmed and fixed by the developers [2]. It is currently pushing the frontier of Al-driven
testing, it also raises challenges of applying RL in the web domain. One of the problems is state
explosion problem. In order to change the focus from testing the user interface (GUI) to testing
the server part of modern web applications, authors did an empirical study of REST API testing
tools [3] and reviewed automated methods for testing REST APIs, which act as the Controller
in an MVC setup.

343

Knowing that the backend handles key logic and data, testing the same is essential and rather it
should be done with the utmost care and focus to make sure that it works as well as expected.
Instead of proposing a new tool, these authors critically examine 10 state-of-the-art API test
generation tools, taken from academia and industry to evaluate how the current testing
techniques can automatically exercise REST APIs [3]. The results of this study ultimately reveal
that there is room for improvement across the board because even the most modern automated
tools achieve low coverage on many APIs. On average, every tool missed a significant portion
of the API logic, no tool was able to exercise most of the code. One of the most primary
problems was the difficulty of generating valid and diverse inputs for APl endpoints. Many
tools struggle with inputs that must satisfy specific formats. Another important issue or a
limitation we might call it is handling dependencies between API calls. Real-world services
often require calling endpoints to a certain order, for example one must POST an object before
GETing it. The study found that most tools either ignore such stateful sequences or rely on
simplistic heuristics which leads to many failed and ineffective calls [3]. While this study
focuses on effective approaches for end-to-end MVC testing, similar research on learning
system optimization [4-5] demonstrates that strategic use of MV C architecture with Blazor can
significantly improve the efficiency and responsiveness of complex systems.

3 Comparative Evaluation of Three MVC Testing Strategies

All three papers have the objective of automating web application testing however they diverge
significantly in methodology and scope. ModelWeb and WebExplor both focus more on web
GUI (front-end) testing, but at the same time they represent opposite ends of the spectrum. One
is guided by human-designed models whereas the other one by machine learning and
exploration. Another key difference lies in how mature and realistic the evaluations are.
WebExplor and the API testing tools were tested in real-world systems, including a commercial
SaaS app and widely used open-source projects. This shows that they can work in production-
like environments. On the other hand, ModelWeb has only evaluated and tested on small
prototypes which had a small number of users, so it’s unknown how well it will work and adapt
in large

enterprise applications. Together, these three studies mark significant progress in automating
the testing of MVVC web applications, especially in areas that typically demand a lot of human
effort. The detailed comparison is presented in table 1.

Table 1. Comparison of Three MVC Testing Strategies

Framework | Model Layer | View Layer | Controller Notes
Layer
ModelWeb N4 N4 V4 Flowchart — BDD
tests;
requires manual models
RL-driven;
WebExplor - V4 V4 Ul exploration;
no upfront models
APItools N4 - N4 Automated REST calls;
input sequencing issues

344

3.1 Implementation of Unit and Integration Testing: This part describes the unit testing and
integration testing of the StudentApplication project. The testing strategy involves creating unit
tests in the interests of guaranteeing service logic, and controller tests for guaranteeing proper
API endpoint functionality. The overall design of the test project is into folders and files that
well define unit testing responsibility and integration testing responsibility. The Tests folder
contains test classes like UnitTestl.cs and StudentControllerTest.cs. The testing framework
employed throughout the project is NUnit, which offers a good and flexible base on which to
write and run tests.

Figure 1. UniteTesting Code

These are unit tests, thus do not rely on the database, HTTP context, or any other external
systems. One can now test reproducibly and quickly the inner logic. For simplifying test classes
and not repeating using statements, a shared using file called GlobalUsing.cs was included. This
import makes all test classes automatically aware of the NUnit framework without importing it
explicitly in each file. This approach renders the code cleaner and complies with best practices
in large-scale test projects.

The UserService class in the main application has methods dealing with simple operations like
user creation, validation, or business rules. It is the class under test in the UnitTest1.cs. The test
method in the UnitTest1.cs indeed tests a method of UserService to check whether the business
logic layer of the application is appropriate.

345

Figure 2. UserService Code

The test method in the UnitTestl.cs indeed tests a method of UserService to check whether the
business logic layer of the application is appropriate.

3.2 Successful Execution of Unit Tests

After performing the test steps, the unit tests were run by using Visual Studio's Test Explorer.
As depicted below, the 9 unit tests were run successfully, indicating the service logic is properly
executed in all scenarios that are being tested. For verification that there is complete information
about the outcome, another screen shot of the whole list of all 9 individual test cases with every
test case marked as "Passed" was taken. This indicates that UserService performed as
anticipated in all the test cases.

arf«isTs_ShoudThron’™ seNUIUsername

Figure 3. All Nine Passed Test Cases in Test Explorer

346

This efficient deployment ensures that business logic within UserService fulfills anticipated
functional expectations. Testing at this level offers considerable assurance that the application's
service layer is robust and dependable.

3.3 StudentApplication Test Structure: Apart from unit testing, integration testing was also
conducted on the API controller level. A different hierarchy was followed especially for testing
StudentApplication project. These types of files are studentcontroller test.cs, which is
specifically meant for endpoint validation.

3.4 StudentControllerTest.cs — Integration Testing: The StudentControllerTest.cs file holds
tests that mimic HTTP requests to the controller level and validate API response behavior. They
check for endpoint functionality including:

« Returning suitable status codes

» Maintaining data consistency

Figure 4. Code Implementation of Studentcontrollertest.Cs

3.5 Execution and Results of Integration Tests: To run the integration tests, the following
command was executed via terminal: dotnet test StudentApplication.Test. Terminal output
displayed confirmation of the pass of 7 integration tests, displayed in green, including a quick
report on passed tests, run time, and general status.

Figure 5. Passed Seven Integration Tests

Terminal output displayed confirmation of the pass of 7 integration tests, displayed in green,
including a quick report on passed tests, run time, and general status.

The implementation showed a thorough testing approach that included integration tests for API
endpoints and unit tests for the main service logic. Every test was completed successfully,
verifying the accuracy of the system's behavior as well as the isolated components. A strong

347

and dependable basis for upcoming development and deployment is guaranteed by this
implementation.

4 Conclusion

Effective MVC testing involves several complementary techniques. ModelWeb converts
flowcharts to easy to maintain BDD tests covering defined user flows; WebExplor learns to
probe Uls for hidden bugs based on reinforcement learning. And automated REST API tools
validate back-end logic. None of the approaches alone is sufficient but taken together they cover
the whole MV C stack. Uniting model-based clarity, Al-driven exploration, and API-level rigor,
teams can create maintainable test suites that scale with applications. For now, research should
be focused on seamless frameworks that combine these methods, self-healing tests that evolve
with Ul and API changes and advanced Al techniques like deep learning for Ul understanding
and intelligent fuzzing for ever more complex scenarios.

References

[1] Ozkaya, M., Kose, M.A., Mamur, A.B., Koc, T. (2022). ModelWeb: a toolset for the model-based
testing of web applications. Annals of Computer Science and Information Systems, 32, 331-338.

[2] Y.Z et al. (2021). Automatic Web Testing Using Curiosity-Driven Reinforcement Learning. In:
Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
423-435. |EEE. https://doi.org/10.1109/icse43902.2021.00048

[3] Kim, Q.X.S.S.,and O.M.A. (2022). Automated test generation for REST APIs: no time to rest yet.
In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), July 2022. ACM.

[4] Memeti, A, lljazi, A., & Luma-Osmani, S. (2024). Optimizing Educational Data Storage and
Retrieval in Learning Management Systems Using Table-Valued Parameters with Blazor
Components. In Proceedings of the Third International Conference on Innovations in Computing
Research (ICR °24) (pp. 390-398). Springer Nature. https://doi.org/10.1007/978-3-031-65522-7_35

[5] Huseini, K., Memeti, A., Imeri, F., & Luma-Osmani, S. (2025). Optimizing Learning
Experiences: MVC BLAZOR Components and Emerging Educational Technologies in LMS
Development. In Proceedings of the Fourth International Conference on Innovations in Computing
Research (ICR’25) (pp. 331-345). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-
031-95652-2_28

348

https://doi.org/10.1109/icse43902.2021.00048

