UDC: 796.325-055.1:616-071.3(497.115)

Original scientific paper

DIFFERENCES IN CERTAIN MORPHOLOGICAL CHARACTERISTICS AND MOTOR ABILITIES BETWEEN MALE VOLLEYBALL PLAYERS IN THE SUPERLEAGUE A AND SUPERLEAGUE B IN KOSOVO

Hazir BEQIRI¹, Laureta ABAZI ¹, Vjosa ZHUBAJ², Kastriot SHAQIRI ¹, Agim REXHEPI ¹

¹ University of Tetova, Faculty of Physical Education, Republic of North Macedonia ² PhD of Sciences in Kinesiology, St. Cyril and Methodius University, Skopje, Republic of North Macedonia

Abstract

The research was conducted in order to determine the difference in some morphological characteristics, motor and specific motor skills between volleyball players of the Super League A and Super League B of Kosovo. The population from which the sample of the test subjects was taken was defined as the population of volleyball players of the Super League A and Super League B of Kosovo. The sample included 80 volleyball players. The sample included 40 senior volleyball players of the Super League A of Kosovo in volleyball for men and 40 senior volleyball players of the Super League B of Kosovo in volleyball for men: For the realization of this work, 10 (ten) anthropometric variables, 12 (twelve) basic motor variables and 4 (four) specific motor variables (technical) were applied. To confirm the difference in some morphological characteristics, motor skills and specific motor skills between volleyball players of the Super League A and Super League B of Kosovo, a t-test for independent groups was applied. Between volleyball players of the Super League A and Super League B of Kosovo, statistically significant differences in anthropometric variables were obtained in body height, arm and thigh circumference in favor of volleyball players of the Super League A. In basic motor skills that aimed to measure running speed, measuring explosive strength-jumping type, measuring explosive strength-throwing type, and measuring agility in favor of volleyball players of the Super League A, and specific motor skills in favor of volleyball players of the Super League A.

Keywords: volleyball, super league A, super league B, T-test, anthropometry, motor

1. Introduction

Volleyball, as a team sport, is one of the most popular sports both in Kosovo and worldwide, suitable for all age groups. The dynamic nature of the game, with numerous exciting actions and point-scoring opportunities, makes volleyball a highly appealing sport. It has become an integral part of schools and households where young people are present.

Today, volleyball can be understood as a way of maintaining a sporting lifestyle within the broader sports system, making it a highly complex phenomenon. It particularly shapes human life—especially that of younger generations—by enhancing motor abilities. The sport has evolved in response to the need to address practical issues related to human behavior, which have arisen as a result of modern lifestyles.

The interest in volleyball has been driven by several factors, one of which is the nature of the game's movement, which engages a large number of children and young people. Previous research has shown that this sport can contribute to solving issues related to physical development, specific behavioral patterns, and even moral and spiritual values (Nesic, 2006). In any sporting activity, including volleyball, no technical element can be executed properly without adequate motor abilities. Conversely, motor abilities cannot be fully expressed without the application of efficient technical skills. Therefore, discussing the development and refinement of motor abilities in isolation from the development and mastery of technical elements and habits would be meaningless.

This study includes several motor variables derived from seven motor dimensions that have been identified so far in terms of action-based performance. The objective is to gather relevant data on psychomotor abilities, which play a crucial role in the selection of young athletes in volleyball. The issue of psychomotor abilities has been extensively researched by various scholars, primarily focusing on the structural superiority of volleyball players and their ability to solve motor tasks in situational training or actual gameplay (Sheppard & Borgeaud, 2008). Most studies address key aspects of game structure and examine factors that are directly or indirectly related to the competitive nature of volleyball. A significant issue highlighted in research conducted thus far is the reliability and validity of so-called psychomotor and situational-motor tests in volleyball performance assessment (Strahonja, 1978; Janković, Đurković, & Rešetar, 2009).

In the field of both manifest and latent psychomotor abilities, certain motor skills are defined as specific or specialized for volleyball. Within the latent-motor domain, two types of precision are distinguished: shooting accuracy and targeting accuracy (aiming at a specific point) (Karalić, 2010). In volleyball, shooting accuracy is particularly crucial.

When discussing the different types of precision in volleyball, it is essential to highlight specific aspects, including: accuracy in overhead setting and passing, accuracy in forearm passing, accuracy in serving, and accuracy in spiking (Sheppard & Borgeaud, 2008). Precision is an integral component of all tactical-technical elements, such as serving, spiking, setting, blocking, receiving, and defensive play.

The selection process in volleyball requires a high level of responsibility from experts, as identifying and developing these skills plays a critical role in the performance and success of athletes.

2. Objectives and aims

Understanding the impact of different training programs on various morphological and motor characteristics in volleyball should be one of the primary concerns of sports experts.

The aim of this study is to determine the differences in certain morphological characteristics, motor abilities, and sport-specific motor skills between volleyball players competing in Kosovo's Superleague A and Superleague B

3. Research methodology

The population from which the sample will be drawn consists of senior volleyball players. The sample includes 40 senior male volleyball players from Kosovo's Superleague A, representing the following clubs: KV "Theranda" (Therandë), KV "Drita" (Gjilan), and KV "Peja" (Pejë). Additionally, 40 senior male volleyball players from Kosovo's Superleague B are included in the study, representing KV "Llapi" (Podujevë), KV "Feniksi" (Kamenicë), and KV "Shpella" (Gadime).

Measurements of morphological characteristics were conducted at the National Center for Sports Medicine (QKMS), while motor ability assessments were carried out during September 2023 on the respective sports facilities of the participating clubs.

For the assessment of anthropometric characteristics, the following variables were applied: Body height (AHEIGHT), Body weight (AWEIGHT), Chest perimeter (APGJOK), Arm perimeter (APKRA), Thigh perimeter (APKOF), Subcutaneous abdominal fat (AIDHLBA), Subcutaneous spinal fat (AIDHLSH), Subcutaneous arm fat (AIDHLKR), Subcutaneous thigh fat (AIDHLKO), Subcutaneous calf fat (AIDHLKË).

For the evaluation of basic motor skills, the following variables were included: 20-meter sprint from a standing start (MVR20L), Hand tapping (MTADOR), Foot tapping (MTAKËM), Long

jump (MKRCGJ), High jump (MKRCLA), Medicine ball throw from chest level (MHTMGJ), Medicine ball throw from a supine position (MHTMSH), Japan test (MJAPANT), "T"-Test (MTETEST), Fast running with a stop at a cone (MVRUTOP), Fast running 9-3-6-3-9 (MVR9-3-6-3-9), Fast backward running 9 meters (MVRPR9M).

For the assessment of situational precision motor skills, the following variables were included (Strahonja & Prot, 1983): Passing the ball with fingers to a vertical target (MSPTGCV), Passing the ball with a hammer to a vertical target (MSPTÇCV), School service to a horizontal target (MSSHSHH), Passing the ball with fingers over the net to a horizontal target (MSPTGCH).

Data analysis

For the morphological, basic motor, and specific (technical) motor variables, the fundamental statistical parameters and distribution measures were calculated for each variable, including the following: minimum values (Min), maximum values (Max), arithmetic mean (Mean), standard deviation (Std. Dev.), and coefficient of variation (Cv).

The distribution curve was tested using the skewness coefficient (asymmetry) and the degree of peak curvature (kurtosis). Correlation coefficients were also calculated.

The differences between the variables of Superleague A and Superleague B volleyball players were verified using an independent samples t-test.

4. Interpretation of the results and discussion

Table 1 presents the descriptive analysis of the morphological, basic motor, and specific motor variables for male volleyball players in Kosovo's Superleague A.

Table 1 Presentation of the basic statistical parameters for the anthropometric, basic motor, and specific motor variables of male volleyball players in Kosovo's Superleague A.

	N	Min	Max	Mean	Std. Dev.	Skew.	Kurt	Kv
AHEIGHT	40	179.2	199	187.53	4.47	0.72	0.20	2.39
AWEIGH								
T	40	62.6	103.1	75.03	9.12	1.16	1.77	12.15
APGJOK	40	84.7	108.2	90.91	6.28	1.34	0.81	6.90
APKRA	40	23.2	32.2	26.54	1.92	0.91	1.13	7.23
APKOF	40	43.7	61.1	49.29	4.33	1.24	0.63	8.79
AIDHLB								
A	40	4.6	24.2	9.53	4.72	1.73	3.00	49.57
AIDHLSH	40	4.2	17.2	7.56	2.72	1.60	3.30	35.90
AIDHLK								
R	40	4	19.6	6.90	3.09	2.55	7.82	44.84
AIDHLK								
O	40	4.8	24.2	9.06	4.17	2.10	5.19	46.00
AIDHLKË	40	5	22.2	10.16	3.75	0.98	1.54	36.85
MVR20L	40	2.9	3.8	3.41	0.19	-0.16	0.43	5.50
MTADOR	40	28	43	35.68	3.43	-0.03	-0.14	9.61
MTAKËM	40	17	30	22.75	3.48	0.35	-0.85	15.28
MKRCGJ	40	210	284	250.78	14.70	-0.04	1.16	5.86
MKRCLA	40	40	71	53.45	7.69	0.55	-0.12	14.38
MHTMGJ	40	770	1100	923.13	81.58	0.10	-0.31	8.84
MHTMSH	40	780	1150	960.50	72.90	0.28	0.55	7.59

MJAPAN								
T	40	6.1	7.9	6.99	0.52	0.24	-0.93	7.44
MTETES								
T	40	9.1	12.7	10.39	0.79	0.79	0.52	7.65
MVRUTO								
P	40	16.8	21.4	18.72	1.30	0.45	-0.50	6.93
MVR9363								
9	40	7.4	10.6	8.77	0.83	0.74	-0.18	9.46
MVRPR9								
M	40	2.2	3.6	2.80	0.42	0.34	-1.22	15.00
MSPTGC								
V	40	21	81	43.73	15.62	0.60	-0.26	35.72
MSPTCC								
V	40	10	100	66.73	28.63	-0.34	-1.13	42.90
MSSHSH								
Н	40	6	12	9.65	1.58	-0.25	-0.51	16.35
MSPTGC								
Н	40	23	40	31.93	3.74	-0.44	-0.17	11.71

In the male volleyball players of Kosovo's Superleague A, for the applied variables, we observe that for 6 variables (three basic motor variables and three specific motor variables), the skewness test yields negative values (-), indicating that the arithmetic means are skewed toward lower results, while most measurements fall above the arithmetic mean.

For 20 variables, including 10 anthropometric variables, 9 basic motor variables, and 1 specific motor variable, the skewness test shows positive values (+), indicating that the arithmetic means are skewed toward higher results, and most measurement results fall below the arithmetic mean. Seven anthropometric variables exhibit pronounced asymmetry, as the skewness coefficient is greater than 1.00, suggesting a deviation from normal distribution. The probability distribution curve (kurtosis) for all anthropometric variables and four basic motor variables follows a bell-shaped, normal (mesokurtic) form.

For eight basic motor variables and four specific motor variables, the curve has a flat (platykurtic) shape.

The coefficient of variation (Cv), which indicates the homogeneity of the results, shows that for 16 variables, the results are homogeneous with a Cv value below 15 (Cv < 15). For 4 variables, the results are moderately homogeneous with values between 15 and 30 (Cv > 15 - 30), and for 7 variables, the results are heterogeneous with values above 30 (Cv > 30).

For male volleyball players in Kosovo's Superleague B, in the applied variables, we observe that for 1 basic motor variable and 1 specific motor variable, the skewness test shows negative values (-), indicating that the arithmetic means are skewed toward lower results, while most measurements fall above the arithmetic mean.

For 24 variables, including 10 anthropometric variables, 11 basic motor variables, and 3 specific motor variables, the skewness test shows positive values (+), indicating that the arithmetic means are skewed toward higher results, and most measurement results fall below the arithmetic mean.

Six anthropometric variables exhibit pronounced asymmetry, as the skewness coefficients are above 1.00, suggesting a deviation from normal distribution. The probability distribution curve (kurtosis) for all anthropometric variables, as well as 10 basic motor variables and 3 specific motor variables, follows a bell-shaped, normal (mesokurtic) form.

For 2 basic motor variables and 1 specific motor variable, the curve shows a flat (platykurtic) shape. The coefficient of variation (Cv), which indicates the homogeneity of the results, reveals

that for 16 variables, the results are homogeneous with a Cv value below 15 (Cv < 15). For 2 variables, the results are moderately homogeneous with values between 15 and 30 (Cv > 15 - 30), and for 8 variables, the results are heterogeneous with values above 30 (Cv > 30)

Table 2. Presentation of the basic statistical parameters for the anthropometric, basic motor, and specific motor

variables of male volleyball players in Kosovo's Superleague B.

	N	Min	Max	Mean	Std. Dev	Skew	Kurt	Kv
AHEIGHT	40	174.2	195.2	182.36	5.09	0.92	0.41	2.79
AWEIGHT	40	61.9	100.8	77.53	8.78	0.71	0.72	11.33
APGJOK	40	86.1	100.9	91.35	4.81	0.94	0.45	5.26
APKRA	40	26.2	35.2	29.61	1.98	0.82	0.66	6.68
APKOF	40	46.9	63.1	51.75	4.44	1.06	0.11	8.57
AIDHLBA	40	4.8	31.4	10.35	5.87	1.90	3.95	56.75
AIDHLSH	40	4.2	18	7.87	3.32	1.50	2.30	42.17
AIDHLKR	40	4.2	19.8	7.28	3.41	1.97	4.32	46.82
AIDHLKO	40	4.4	24.4	9.77	4.29	1.73	3.61	43.93
AIDHLKË	40	5.2	22.4	10.99	3.96	1.03	1.41	36.08
MVR20L	40	3.02	3.96	3.52	0.17	0.14	1.70	4.97
MTADOR	40	26	41	35.03	3.60	0.18	-0.23	10.27
MTAKËM	40	15	30	21.63	3.43	0.64	0.02	15.87
MKRCGJ	40	191	274	236.85	16.02	-0.30	1.82	6.76
MKRCLA	40	34	64	49.13	6.66	0.47	0.10	13.57
MHTMGJ	40	720	1040	865.13	79.32	0.21	-0.42	9.17
MHTMSH	40	740	1080	918.63	70.13	0.14	0.34	7.63
MJAPANT	40	6.7	7.9	7.60	0.26	-1.20	2.20	3.44
MTETEST	40	10.2	13.2	11.35	0.72	0.84	0.33	6.37
MVRUTOP	40	17.8	23	19.71	1.27	0.48	-0.24	6.45
MVR93639	40	7.4	11.2	9.18	0.75	0.42	0.63	8.22
MVRPR9M	40	2.4	3.9	3.14	0.42	0.15	-1.08	13.35
MSPTGCV	40	16	73	35.78	15.67	0.88	-0.28	43.80
MSPTCCV	40	10	100	41.45	29.64	0.91	-0.40	71.51
MSSHSHH	40	5	19	8.60	2.90	1.18	2.60	33.70
MSPTGCH	40	11	38	25.93	5.88	-0.32	-0.13	22.67

In Table 3, it is observed that between the male volleyball players of Superleague A and Superleague B, there is a significant statistical difference in the anthropometric characteristics. Specifically, in the anthropometric variable **height** (**AHEIGHT**), a significant statistical difference is noted between volleyball players and handball players in the arithmetic mean: Men dif = 5.170; t = 4.824; df = 78; Sig = 0.000; p < 0.000.

For the anthropometric variable **arm circumference** (**APKRA**), a significant statistical difference is observed between volleyball players and handball players in the arithmetic mean: Men dif = -3.072; t = -7.051; df = 78; Sig = 0.000; p < 0.000.

For the anthropometric variable **thigh circumference** (**APKOF**), a significant statistical difference is observed between volleyball players and handball players in the arithmetic mean: Men dif = -2.460; t = -7.051; df = 78; Sig = 0.014; p < 0.050, in favor of Superleague A volleyball players.

Table 3. Differences between male volleyball players in Superleague A and Superleague B in anthropometric characteristics.

characteristics.												
Independe	ent Samples Tes		,		· -	1'.	C N #					
		Levene's Test for		t-test for Equality of Means								
		Test										
		Equali Varian	•									
		V arian F		t	df	Cia	Mean	Std.	95%			
		Г	Sig.	t	uı	Sig. (2-	Diff.	Sta. Error		nco		
						taile	DIII.	Diff.	Interval			
						d)		Dill.	Differen			
						u)			Lower	Uppe		
									Lower	r		
				4.82				1.07				
AHEIGH	Equal var. ass.	.308	.580	4	78	.000	5.170	1	3.036	7.303		
T	Equal var. not			4.82	76.73			1.07				
	ass.			4	5	.000	5.170	1.07	3.035	7.304		
				_								
	Equal var. ass.	.007	.933	1.24	78	.216	-2.496	2.00	-6.482	1.489		
AWEIG	1			7				1				
HT	Б 1			-	77.00			2.00				
	Equal var. not			1.24	77.89	.216	-2.496	2.00	-6.482	1.489		
	ass.			7	2			1				
	Egypt son one	1 055	177	252	70	726	440	1.25	2.029	2.049		
APGJOK	Equal var. ass.	1.855	.177	352	78	.726	440	0	-2.928	2.048		
Artion	Equal var. not			352	73.04	.726	440	1.25	-2.931	2.051		
	ass.			332	8	.720	440	0	-2.931	2.031		
				-						_		
	Equal var. ass.	.074	.787	7.05	78	.000	-3.072	.435	-3.940	2.205		
APKRA				1						2.203		
	Equal var. not			-	77.92				2010	_		
	ass.			7.05	9	.000	-3.072	.435	-3.940	2.204		
				1								
	Egypt	154	605	2.50	70	014	2.460	000	1 1 1	500		
	Equal var. ass.	.154	.695	2.50	78	.014	-2.460	.980	-4.411	508		
APKOF				9								
	Equal var. not			2.50	77.95	014	2.460	000	1 1 1	500		
	ass.			2.50	7	.014	-2.460	.980	-4.411	508		
				9				1 10				
AIDHLB	Equal var. ass.	.651	.422	694	78	.489	827	1.19 1	-3.199	1.544		
AIDHLB	Equal var. not				74.54			1.19				
11	ass.			694	8	.490	827	1.19	-3.201	1.546		
	Equal var. ass.	1.251	.267	450	78	.654	305	.677	-1.654	1.044		
AIDHLS	Equal var. not	1.201	.201		75.06							
H	ass.			450	$\begin{vmatrix} 73.00 \\ 2 \end{vmatrix}$.654	305	.677	-1.655	1.045		
	Equal var. ass.	.737	.393	525	78	.601	382	.727	-1.831	1.066		
AIDHLK	Equal var. not				77.27							
R	ass.			525	7	.601	382	.727	-1.831	1.066		
	Equal var. ass.	.046	.831	748	78	.457	707	.945	-2.590	1.175		

AIDHLK	Equal var. not			748	77.93	.457	707	.945	-2.590	1.175
O	ass.			., .	3	,		.,	,	11170
AIDHLK	Equal var. ass.	.023	.880	957	78	.342	825	.862	-2.541	.891
Ë	Equal var. not			957	77.75	.342	825	862	2 5/11	801
L	ass.			931	0	.542	623	.802	-2.541	.071

In Table 4, it is observed that between the male volleyball players of Superleague A and Superleague B in Kosovo, there is a significant statistical difference in all motor skills and Specific motor skills at the p < 0.05 level. However, for basic motor variables that were aimed at measuring segment speed, such as hand tapping (MTADOR), no significant statistical difference is observed in the arithmetic mean:

Men dif = 0.650; t = 0.827; df = 78; Sig = 0.411; p > 0.050.

Similarly, for foot tapping (MTAKËM), no significant statistical difference is observed in the arithmetic mean:

Men dif = 1.125; t = 1.456; df = 78; Sig = 0.149; p > 0.050.

Table 4. Differences Between Male Volleyball Players in Superleague A and Superleague B in Basic and Specific Motor Skills

	Specific Motor Skills											
Independent Samples Test												
	Levene	e's	t-test for Equality of Means									
	Test	for										
		Equalit	ty of									
		Varian	ces									
		F	Sig.	t	df	Sig.	Mean	Std.	95%			
						(2-	Diff.	Error	Confide	ence		
						tailed		Diff.	Interval	of the		
)			Differer			
						<i>′</i>			Lower	Upper		
MVR20L	Equal var. ass.	.182	.670	- 2.688	78	.009	109	.040	189	028		
WIVK2UL	Equal var. not ass.			- 2.688	77.62 6	.009	109	.040	189	028		
MTADO	Equal var. ass.	.067	.797	.827	78	.411	.650	.786	914	2.214		
MTADO R	Equal var. not ass.			.827	77.82 1	.411	.650	.786	914	2.214		
MEAZË	Equal var. ass.	.252	.617	1.456	78	.149	1.125	.772	412	2.662		
MTAKË M	Equal var. not ass.			1.456	77.98 7	.149	1.125	.772	412	2.662		
MKRCGJ	Equal var. ass.	.027	.869	4.051	78	.000	13.920	3.43 7	7.082	20.76 7		
MIKKCGJ	Equal var. not ass.			4.051	77.43 4	.000	13.925	3.43 7	7.081	20.76 8		
MKRCL	Equal var. ass.	.607	.438	2.689	78	.009	4.325	1.60 8	1.122	7.527		
A	Equal var. not ass.			2.689	76.46 7	.009	4.325	1.60 8	1.121	7.528		
MHTMG	Equal var. ass.	.009	.924	3.224	78	.002	58.000	17.9 9	22.183	93.81 6		
J	Equal var. not ass.			3.224	77.93 9	.002	58.000	17.9 9	22.183	93.81 6		

MHTMS	Equal var. ass.	.036	.850	2.618	78	.011	41.875	15.9 9	10.032	73.71 7
Н	Equal var. not ass.			2.618	77.88 3	.011	41.870	15.9 9	10.031	73.71 8
MJAPAN	Equal var. ass.	22.91 8	.000	- 6.713	78	.000	617	.091	800	434
Т	Equal var. not ass.			- 6.713	57.58 0	.000	617	.091	801	433
MTETES	Equal var. ass.	.414	.522	- 5.649	78	.000	960	.169	-1.298	621
Т	Equal var. not ass.			- 5.649	77.31 2	.000	960	.169	-1.298	621
MVRUT	Equal var. ass.	.016	.901	- 3.446	78	.001	990	.287	-1.561	418
OP	Equal var. not ass.			- 3.446	77.96 8	.001	990	.287	-1.561	418
MVR936	Equal var. ass.	.203	.654	- 2.355	78	.021	417	.177	770	064
39	Equal var. not ass.			- 2.355	77.31 6	.021	417	.177	770	064
MVRPR9	Equal var. ass.	.055	.816	- 3.599	78	.001	337	.093	524	150
M	Equal var. not ass.			- 3.599	77.99 9	.001	337	.093	524	150
MSPTGC	Equal var. ass.	.086	.770	2.273	78	.026	7.950	3.49 7	.986	14.91 3
V	Equal var. not ass.			2.273	77.99 9	.026	7.950	3.4	.986	14.9
MSPTCC	Equal var. ass.	.029	.866	3.879	78	.000	25.270	6.51 5	12.302	38.24 6
V	Equal var. not ass.			3.879	77.90 6	.000	25.275	6.51 5	12.303	38.24 6
MSSHSH	Equal var. ass.	10.58 3	.002	2.012	78	.048	1.050	.521	.011	2.088
Н	Equal var. not ass.			2.012	60.25 2	.049	1.050	.521	.00640	2.093
MSPTGC	Equal var. ass.	8.425	.005	5.449	78	.000	6.000	1.10 1	3.807	8.192
Н	Equal var. not ass.			5.449	66.11 5	.000	6.000	1.10 1	3.801	8.198

One of the most noticeable morphological parameters in volleyball is height and body mass. One of the main reasons for this is that clubs and national teams in all major competitions are required to submit this information for each player. This creates a large database that is accessible to everyone and allows comparisons between players of the same team and those of the best teams. One of the main challenges with data collection in this way is the unknown procedure for conducting measurements, the variety of measuring instruments used, and the fact that players are often asked to state their height and weight themselves. The basic morphological characteristics of volleyball players play an important role in determining their positions within teams. These morphological characteristics change based on age, and both height and weight are variable.

For the final of the 2019 European Championship, the following national teams qualified for the men's volleyball competition: Serbia, France, Slovenia, Italy, Poland, Germany, Russia, and Ukraine. The differences between the players in the 2019 European Championship final and the players from Superleague A of Kosovo are presented in **Table 5**. From this table, it is evident that in terms of height and body mass, the volleyball players in Superleague A of Kosovo have lower values.

Table 5. Difference Between Volleyball Players of Superleague A and Players from the Top 8 Teams in the 2019

Men's European Championship Final in Height and Body Mass

Teams	Height	Weight
Serbia	190.5	89
France	196	88.5
Slovenia	195	92.5
Italy	195.5	91.5
Poland	195	89.5
Germany	201	97
Russia	201	92.5
Ukraine	192.5	86
Kosovo	187.53	75.03

5. Conclusion

This study aimed to examine the differences in various morphological characteristics, motor abilities, and specific motor skills between volleyball players of the Superliga A and Superliga B in Kosovo. The population from which the sample was drawn consisted of volleyball players from both Superliga A and Superliga B in Kosovo. A total of 80 volleyball players were included in the sample. The sample included 40 senior players from Superliga A in Kosovo: players from the clubs KV "Theranda" – Theranda, KV "Drita" – Gjilan, and KV "Peja" – Peja. Additionally, 40 senior players from Superliga B in Kosovo were included: players from KV "Llapi" – Podujevë, KV "Feniksi" – Kamenicë, and KV "Shpella" – Gadime.

Morphological characteristics were measured at the National Center of Sports Medicine (QKMS), while motor skills were assessed during the month of September 2023 at the sports facilities of the clubs. To achieve the objectives of this thesis, 10 anthropometric variables, 12 basic motor variables, and 4 specific motor (technical) variables were applied.

To verify the differences in various morphological characteristics, motor abilities, and specific motor skills between the volleyball players of Superliga A and Superliga B in Kosovo, an independent samples t-test was applied. The processing of the results shows that 7 morphological variables exhibited significant asymmetry, as well as pronounced heterogeneity among the players. The results indicate that the volleyball players of Superliga A in Kosovo demonstrated distinct characteristics in these anthropometric variables. Additionally, the results show that, among the volleyball players of Superliga B in Kosovo, 6 anthropometric variables, 1 basic motor variable, and 1 specific motor variable exhibited pronounced asymmetry and heterogeneity.

Statistically significant differences between the players of Superliga A and Superliga B in Kosovo were observed in the anthropometric variables of body height, arm circumference, and thigh circumference, which favored the players of Superliga A. In terms of basic motor abilities, significant differences were found in sprint speed, explosive strength (jump type), explosive strength (throw type), and agility measurement. Furthermore, specific motor abilities also favored the players of Superliga A. Considering the specifics of volleyball, it is logical that

certain morphological characteristics, basic motor skills, and specific motor abilities significantly impact the success of the game.

References

- [1]. Adams, K., O'Shea, J. P., O'Shea, K.L. i Climstein, M. (1992). The effect of six weeks of squat, plyometric and squat-plyometric trianing on power production. Journal of Applied Sports Science Research. 6(1), 36-41.
- [2]. Allerheiligen, B., i Rogers, R. 1995. Plyometrics program design. Strength and Conditioning, 17 (4), 26–31.
- [3]. American Alliance for Health, Physical Education, Recreation and Dance (1989). Physical best the AAHPERD guide to physical fitness education and assessment. Reston, Va: AAHPERD.
- [4]. American Volleyball Coaches Association (2005). Volleyball skills and drills. Human Kinetics.
- [5]. Aranitović, K. (2018). Komparativna anaila morfoloških karakteristika i motoričkih sposobnosti prve i druge postave ženske odbojkaške ekipe. Master rada. Beograd, Fakultet Sporta i Fizičkog Vaspitanja.
- [6]. Bandyopadhyay, A. (2007). Anthropometry and body composition in soccer and volleyball players in West Bengal, India. J. Physiol. Anthropol. 26(4), 501-505.
- [7]. Borràs, X., Balius, X., Drobnic, F. i Galilea, P. (2011). Vertical jump assessment on volleyball: a follow-up of three seasons of a high-level volleyball team. Journal of Strength & Conditioning Research. 25. (6), 1686-1694.
- [8]. Bosco, C. (1982). Physiological considerations of strength and explosive power and jumping drills (plyometric exercise). Proceedings of Conference '82: Planning for Elite Performance. 27-37.
- [9]. Cabral V.G., Cabral C.A., Miranda, M.F., Dantas, R.M., i Reis, B.M. (2011). Efeito discriminante da morfologia e alcance de ataque no nivel de desempento em voleibolistas. Revista Brasileira de Cineantropometria e Desempenho Humano, 13(3), 223–229.
- [10]. Campos, F. A., Pellegrinotti, Í. L., Campos, L. C., Dias, T. M., & Gómez, M. Á. (2020). Relative Age Effect in the Girls' Volleyball U18 World Championship. Journal of Human Kinetics, 72(1), 195-202.
- [11]. Duncan, M. J., Woodfield, L. i al-Nakeeb, Y. (2006). Anthropometric and physiological characteristics of junior elite volleyball players. British Journal of Sports Medicine. 40(7), 649–651.
- [12]. Gabbett, T. i Georgieff, B. (2007). Physiological and anthropometric characteristics of junior national, state, and novice volleyball players. Journal of Strength and Conditioning Research. 21(3), 902–908.
- [13]. Grgantov, Z. (2003). Kondicijska priprema odbojkaša. Međunarodni znanstveno stručni skup. Kondicijska priprema sportaša. Zbornik radova. 12. Zagrebački sajam sporta i nautike. Zagreb, 21. 22. veljače 2003. godine.
- [14]. Janković, V., Đurković, T. i Rešetar, T. (2009). *Uvod u specijalizaciju igračkih uloga u odbojci*. Priručnik. Zagreb: Autorska naklada.
- [15]. Karalić, T. (2010). *Preciznost kao faktor uspješnosti u tehničko-taktičkim strukturama odbojke*. Doktorska disertacija. Istočno Sarajevo: Fakultet fizičkog vaspitanja i sporta.
- [16]. Lidor,R i Ziv,G., (2010). Physical Characteristics and Physiological Attributes of Adolescent Volleyball Players -A Review. Pediatric Exercise Science. 22, 114-134.
- [17]. Mala, L., Maly, T., Záhalka, F., i Bunc, V. (2010). The profile and comparison of body composition of elitefemale volleyball players. International Journal of Fundamental and Applied Kinesiology. 42 (1), 90-97.
- [18]. Nešić, G.(2006). Strukturatakmičarskeaktivnostiuženskojodbojci(Doktorskadisertacija). Beograd : Fakultet sporta i fizičkog vaspitanja
- [19]. Noyes, F.R., Barber-Westin, S. D., Smith, S.T., i Campbell, T. (2011). A Training program to improve neuromuscular indices in female high school volleyball players.
- [20]. Pereira, A., Costa, A.M., Santos, P., Figueiredo, T., i João, P.V. (2015), Training strategy of explosive strength in young female volleyball players medicina. (51), 126 131.
- [21]. Sheppard, J.M., i Borgeaud, R. (2008). Influence of stature on movement speed and repeated efforts in elite volleyball players. *Journal of Australian Strength and Conditioning*. 16. 12–14.
- [22]. Strahonja, A. (1983). Relacije situaciono motoričkih faktora i ocjena uspješnosti igranja odbojke. Kineziologija, 15(2), 93–103.

- [23]. Strahonja, A. (1978). Utjecaj manifestnih i latentnih antropometrijskih varijabli na situacionu preciznost u odbojci. *Kineziologija*, *vol.* 8. br. 1-2. 102-125. Zagreb: Fakultet fizičke kulture.
- [24]. Strahonja, A., i Prot, F. (1983). Odnosi bazičnih motoričkih dimenzija i uspješnost u odbojci. Zagreb: Kineziologija, br. 2. Zagreb: Fakultet fizičke kulture.
- [25]. Vassil, K., i Bazanovk, B. (2012). The effect of plyometric training program on young volleyball players in their usual training period. International Network of Sport and Health Science. 7 (1), 34-40.
- [26]. Veličković, M. (2017). Efekti programiranog treninga na promjene eksplozivne snage i agilnosti mladih odbojkašica. Doktorska disertacija, Niš, Univerzitet u Nišu, Fakultet sporta i fizičkog vaspitanja
- [27]. Vuković, M. i Kalajdžić, D. (1997). Uporedna analiza motoričkih varijabli odbojkaša saveznog I pokrajinskog nivoa takmičenja. U: Zbornik radova Fakulteta fizičke kulture Novi Sad, br. 10, sa Međunaordnog stručno-naučnog skupa "Uloga nastavnika u svetu koji se menja", Aranđelovac. 320-325