Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

UDC: 004.434.045Java-048.22
Review

Implementation Issue Analysis of Java RMI and CORBA

Besar Huseini'*, Agon Memeti!
'Faculty of Natural Sciences and Mathematics, University of Tetova, Tetova, RNM

*Corresponding author e-mail: besar.huseini@unite.edu.mk

Abstract

Extendable object-based program’s (processes) architecture from logically partitioned object model to
physically distributed object model is a key feature onto expanding the programming abilities, resource
use/share possibilities and space-limited opportunities. The distributed environment, beside the design,
requires new approaches and implementation methods. The idea behind this paper is to provide
implementation analysis of Java remote method invocation (RMI) and Common object request broker
architecture (CORBA) as most known distributed object oriented architectural platforms. Explicitly
focused on the issues of such distributed object-oriented implementation methods.

Keywords: Java RMI, CORBA, Distributed Computing, implementation issues, analysis.

Introduction

Forced by fast global network growth and connectivity, the actual limits of object oriented
environments have been reached and that doesn’t traditionally include two very important
aspects like connectivity and interoperability. The wide-spread use of object based
technology on one hand and the need of distributed environment on the other hand, lead to
the increasing correlation of these technologies under several different implementation
architectures, methodologies and communication paradigms [1]. Remote invocation is the
most common communication paradigm on distributed systems. Generally, it represents
duplex relationship between sender and receiver (space decoupling), with explicitly defined
flow of communication based on real time non-parallel existence (time decoupling) of both
communication tube endpoints. From architectural and design point of view, such distributed
communication paradigm has risen to a higher level the ease of implementation [2].

Remote Method Invocation (RMI) and Common Object Request Broker Architecture
(CORBA) can be defined, among the rest, as mostly used object based middleware solutions
representing object model of distributed programming paradigm, object oriented analogs of
RPC (remote procedure call) in distributed OO environment and its successors [3].

RMI is an effective solution, simple and easy to write framework for developing distributed
applications providing location awareness and transparency. It is specifically created for Java;
therefore, it is language dependable and always refers to Java RMI. It has a single purpose, to
implement distributed objects.

CORBA represents middleware solution that provides integration, standardization and
interoperability, separating object implementation from interfaces using Interface Definition
Language (IDL) [4].

Using Java RMI is much easier to build complicated systems. Since it is language-specific
(Java), complex applications development requires much smaller amount of code than most
language undependable (IDL) distributed solutions like CORBA. It is much easier to evolve

A

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

and maintain RMI application thanks to its serialization support and Java specific garbage
collector. On other hand, CORBA is language independent, using IDL its scope over
distributed system build upon more different technologies is bigger. It inherits all the
advantages of its target languages and underlying technologies it is built upon, yet, their
limitations too [5].

The paper is organized in three sections. The first section describes the process of method
invocation on CORBA and RMI.

On the second section, more detailed implementation analysis of both technologies is
provided. It includes the basic RMI and CORBA method implementation and code examples
from different approaches to the same problem. The issue of object persistence and
portability is included during this section too.

On the last section, deeper analyze of major implementation issues of CORBA is done, on
technical point of view, but also the market impact over it.

Briefly On Methods

Java RMI relies on a protocol called the Java Remote Method Protocol (JRMP). Java relies
heavily on Java Object Serialization, which allows objects to be marshaled (or transmitted) as
a stream. Since Java Object Serialization is specific to Java, both the Java RMI server object
and the client object have to be written in Java [5].

Interface

Remote Object User / 4 Object Implementor
» «
Application using Object Implementation
remote object (provided by programmer)
Object Stub Object Skeleton
(provided by RMI) (provided by RMI)
- .
v
RMI Protocol RMI Protocol
- - i
v
Network protocols (tcp/ip, etc.) Network protocols (tcp/ip, etc.)
T a

v
Physical Network

Figure 1. RMI interface [6]

Each Java RMI Server object defines an interface, which can be used to access the server
object outside of the current Java Virtual Machine (JVM) and on another machine's JVM.
The interface exposes a set of methods, which are indicative of the services offered by the
server object [7].

A client RMI call invokes the client-side stub (the proxy of the remote method that resides on
the client’s machine). The stub uses Object Serialization to marshal the arguments, i.e.,
render argument object values into a stream of bytes that can be transmitted over a network.
The stub then passes control to the Java Virtual Machine’s RMI layer. The skelefon on the
server side dispatches the call to the actual remote object after un-marshaling the arguments
into variables. The stub and skeleton programs are generated by the rmic compiler [6].

On other hand, CORBA uses stubs and skeletons in much the same way as Java RMI. The
Proxy or a local representative for the client side is called the IDL stub; the server-side
proxy is the IDL skeleton.

A stub is a local proxy for a remote object. It presents the same interface as the server
object, but runs on the same computer as the client which is used for more functionality
like support for Dynamic invocation. For Marshalling the request and the response, the
information is delivered in a canonical format defined by the IIOP protocol used for CORBA

QL

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

interoperability on the Internet. IDL stub makes use of dynamic invocation interface for
marshalling on the client side.

A skeleton is a remote interface to the server object implementation. It runs on the same
computer as the server object and provides an interface between the server object's
implementation and other objects. IDL Skeletons use the Dynamic Skeleton Interface for
un-marshalling the information. The request (response) can also contain Object Reference
as parameters; remote object can be passed by reference [5].

The stub and skeleton are connected via an ORB. The ORB forwards method invocations
from the stub to the skeleton and uses a special object called an Object Adapter (OA), which
runs on the same computers as the server object.

Client (hject Clieni Objeei
Amlemeasn treplereem stion

| HH oL | 10}

saehoton

Figure 2. CORBA remote invocation when client and server are using different ORBs [8]

The OA activates the server object, if required, and helps to manage its operation. You can
think of the ORB as analogous to the remote reference and transport layers of Java RMI, and
the OA as being like the remote registry. The OA is sometimes referred to as a Basic
Object Adapter (BOA) [9].

Methods Implementation

RMI is simpler to work with since the Java developer does not need to be familiar with the
Interface Definition Language (IDL). In general, however, CORBA differs from RMI in the
following areas:

CORBA interfaces are defined in IDL and RMI interfaces are defined in Java. RMI-IIOP
allows you to write all interfaces in Java (see RMI-IIOP).

CORBA supports in and out parameters, while RMI does not since local objects are passed
by copy and remote objects are passed by reference.

CORBA was designed with language independence in mind. This means that some of the
objects can be written in Java, for example, and other objects can be written in C++ and yet
they all can interoperate. Therefore, CORBA is an ideal mechanism for bridging islands
between different programming languages. On the other hand, RMI was designed for a single
language where all objects are written in Java. Note however, with RMI-IIOP it is possible to
achieve interoperability.

CORBA objects are not garbage collected. As we mentioned, CORBA is language
independent and some languages (C++ for example) does not support garbage collection.
This can be considered a disadvantage since once a CORBA object is created, it continues to
exist until you get rid of it, and deciding when to get rid of an object is not a trivial task. On
the other hand, RMI objects are garbage collected automatically [10].

QA

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

To implement RMI, three processes are needed:

» client —to invoke a remote object,

= server — the remote object is owned by the server process and

» object registry — this is a name server for objects. The names registered in the server

can be referenced for particular objects.

Two different kinds of classes that can be used in RMI: remote and serializable classes.

A remote object is an instance of a remote class. When a remote object is used in the same
address space, it can be treated just like an ordinary object. But, if it will be used from the
outside of the address space, the object has to be referenced by an object handle. There are
differences between them but most of the time can be used in the same way.

Client machine Server machine

P Object
e Server a7
. < State
ame M
client e w interface OO« [~ Method
okes Ll J e object : i
a methed v T A B
Skeleton o 1 Interface
invekes —— [
Proxy same method
at object
Client 0S Senens

|. I|
L . g

Marshalled invocation
is passed across network

Network

Figure 3. RMI implementation [11]

Correspondingly, a serializable object is an instance of a serializable class. A serializable
object can be copied from one address space to another. This means a serializable object can
be a parameter or a return value. If a remote object will be returned, actually it is the object
handle being returned. Technically, the object could be both remote and serializable, it can be
compiled in JDK, but there will be a run-time error.

A class is serializable if it implements the java.io. Serializable interface. Any subclasses of
a serializable class are serializable classes, and any data inside a serializable class are also
serializable data.

It is a little difficult to define a remote class. A remote class includes two parts: the
interface and the class itself.

The remote interface must have the following aspects:

* being declared public,

» extend the interface java.rmi.Remote and

* the exception java.rmi.RemoteException must be thrown in all the methods inside the

interface.

And the remote class itself has the following characteristics:

* it must implement a remote interface and

» extends the java.rmi.server.UnicastObject class, the object of which exists in the

address space of the server.

Transparency (location and language) is the key at CORBA. The location transparency
means that when a client calls a remote object method, it seems it calls an object just located
in the same address space as the client itself. It is implemented via a stub code, which is
produced by an IDL compiler. The language transparency indicates the objects being called
can be implemented in any language without knowing by the calling client [8]. The IDL
module defines a naming scope for all IDL type and interface definitions of the application to
avoid naming conflict with other application IDL specifications. With the IDL interface
described, objects can be set-up and client programs written for these objects.

Q7

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

First, we compile the IDL interface and do the programming language mappings. Mappings
are language- specific and CORBA provides IDL compiler for each. The compiler generates
outputs comprising the stubs used by clients of the described object types and skeletons used
by servers that implement them.

The second step is to implement IDL interfaces. It is done through completing or reusing
skeleton code, in any language following a set of specific mapping rules.

Third, object servers and object clients are implemented. The written server programs include
the implementation of objects as well as the generated skeletons. This program contains the
code required for connecting to ORB, creating the object and its reference public. Another
hand, a set of client programs act on the object by accessing their attributes and invoking
operations. These programs include the stub code, GUI and the application code.

The next step is to install and configure servers, to automate activation when requests are
received and distribute and configure client programs so clients debugged programs must be
distributed to the sites where they will be used.

The last step is the distributed execution itself, where the ORB will perform the
communication between the distributed objects [12].

A. Comparison of the amount of work for implementation code

Table 1. Interface [13]

Java RM1 CORBA
Interface definition: Server Interface
package JRMIIRC; CORBAIRCCallback {
import java.rmi.*; void message_callback(in
public interface JRMIIRCServerl extends string message);
java.rmi.Remote { IS
void register_callback(JRMIIRCCallback interface CORBAIRCServerl {
callbackClient) throws RemoteException; void register _callback(in
void send_message(String message) throws CORBAIRCCallback
RemoteException; callbackClient);
void unregister_callback(JRMIIRCCallback void send_message(in string
callbackClient) throws RemoteException;} message),
Interface definition: Client void unregister _callback(in
package JRMIIRCimport java.rmi.*; CORBAIRCCallback
public interface JRMIIRCCallback extends callbackClient),
java.rmi.Remote { IS
void message_callback(String message) throws N
RemoteException;}

Java RMI (Sun ONE Studio 5 Standard Edition), CORBA (ORB implementation in Java 2
Standard Ed. with Sun ONE Studio 5 Standard Edition)

QR

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

Table 2. Instantiating Remote Object [13]

Java RM1 CORBA

Instantiating remote Instantiating remote object

object Jjava.util. Properties props=new java.util. Properties(),

server=(JRMIIRC.JRMIIR | props.put("org.omg. CORBA.ORBInitialPort","900"),

CServerl) props.put("org.omg. CORBA.ORBInitialHost",

Naming.lookup("rmi.//"+se | serverTF.getText()),

rverTF.getText()+ orb=O0RB.init(new String[] {},props);

"/JRMIIRCServer"); POA rootpoa=POAHelper.narrow
(orb.resolve_initial references("RootPOA"));
NamingContextExt

root=NamingContextExtHelper.narrow
(orb.resolve_initial references("NameService")),
NameComponent[] name=new NameComponent[1],;
name[0] =new
NameComponent("CORBAIRCServer","");
server=CORBAIRC.CORBAIRCServerHelper.narrow
(root.resolve(name)),

Java RMI (Sun ONE Studio 5 Standard Edition), CORBA (ORB implementation in Java 2
Standard Edition with Sun ONE Studio 5 Standard Edition)

Table 3. Registering Callback And Sending Message To Server [13]

Java RM1 CORBA

Registering callback procedure Registering callback procedure

callbackServer=(JRMIIRC.JRMIIRCC | callbackServer=new

allback) new CORBAIRCCallbackImpl(this,orb),

JRMIIRCCallbackIlmpl("JRMIIRCCall | rootpoa.activate_object(callbackServer);

back",this); callbackServerRef=

server.registriraj callback(callbackSe | CORBAIRC.CORBAIRCCallbackHelper.

rver); narrow(rootpoa.servant_to_reference(

Sending message to server callbackServer));

server.send_message(nickTF.getText() | server.register_callback(callbackServerRef);

+": rootpoa.the POAManager().activate();

"+messageTA.getText()); Thread callbackServerThread=new
Thread(callbackServer),

[reference: an overview of distributed | callbackServerThread.start();

programming techniques]| Sending message to server
server.send_message(nickTF.getText()+":
"+messageTA.getText());

Java RMI (Sun ONE Studio 5 Standard Edition), CORBA (ORB implementation in Java 2
Standard Edition with Sun ONE Studio 5 Standard Edition)

Q0

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

Object Persistence

In commercial ORBs, object references persist. They can be saved by clients as strings and
subsequently be recreated from those strings. The methods required to perform these
operations are object fo_string and string fo_object respectively, both of which are
methods of class Orb. With the latter method, an object of (CORBA) class Object is
returned, which must then be 'downcast' into the original class via method narrow of the
appropriate 'helper' class.

Suppose that we have a reference to a Stockitem object and that this reference is called
itemRef. Suppose also that the ORB on which the object is registered is identified by the
variable orb. The following Java statement would store this reference in a String object called
stockltemString:

String stockltemString = orb.object _to_string(itemRef),

The following statements could subsequently be used to convert this string back into a
Stockltem object reference:

org.omg.CORBA.Object obj = orb.string to_object(stockltemString);

Stockltem itemRef = StockltemHelper.narrow(obj);

Of course, the client would have needed to save the original string in some persistent form
(probably within a disc file).

Since Java IDL supports transient objects only (i.e., objects that disappear when the server
process closes down), the above technique is not possible. However, it is possible to
implement an object so that it stores its state in a disc file, which may subsequently be used by
the object's creation method to re-initialize the object [8].

Portability (RMI-IOOP)

To overcome the language-specific disadvantages of RMI when compared with CORBA, Sun
and IBM came together to produce RMI-IIOP (Remote Method Invocation over Internet
Inter-Orb Protocol), which combines the best features of RMI with the best features of
CORBA and gives an answer to the big portability problems. Using IIOP as the transport
mechanism, RMI-IIOP implements OMG standards to enable application components
running on a Java platform to communicate with components written in a variety of
languages (and vice-versa) — but only if all the remote interfaces are originally defined as
Java RMI interfaces. It is intended to be used by software developers who program objects in
Java and wish to use RMI interfaces (written in Java) to communicate with CORBA objects
written in other languages. Using RMI-IIOP, objects can be passed both by reference and by
value over IIOP [14].

So, with the newly adopted CORBA standards Objects by Value and Java to IDL mapping
have made the birth of RMI-IIOP possible. This also means any ORB, which has adopted
these standards will work with RMI-IIOP [8].

Against CORBA?!

The most obvious technical problem is CORBA’s complexity—specifically, the complexity
of its APIs. Many of CORBA’s APIs are far larger than necessary. For example, CORBA’s
object adapter requires more than 200 lines of interface definitions, even though the same
functionality can be provided in about 30 lines. See section 0 above for comparison example.
Another problem area is the C++ language mapping. The mapping is difficult to use and
contains many pitfalls that lead to bugs, concerningthread safety, exception safety, and
memory management. On contrary, Java RMI is language dependable, fully java
implemented with total absence of this problem [15].

aqN

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

CORBA provides quite rich functionality, but fails to provide two core features like security
and versioning.
CORBA’s unencrypted traffic is subject to eavesdropping and man-in-the-middle attacks, and
it requires a port to be opened in the corporate firewall for each service. This conflicts with
the reality of corporate security policies. Java RMI implements custom socket factories to
control address binding, control connection establishment (such as to require authentication),
and to control data encoding (such as to add encryption or compression). Java use
serialization too [16].
Deployed commercial software requires middleware that allows for gradual upgrades of the
software in a backward-compatible way. CORBA does not provide any such versioning
mechanism (other than versioning by derivation, which is utterly inadequate). Instead,
versioning a CORBA application generally breaks the on-the-wire contract between client
and server. This forces all parts of a deployed application to be replaced at once, which is
typically infeasible. Java is very specific on the versioning system issues and there are
explicitly built libraries for that [17]. Example:

String version = Runtime.class.getPackage().getImplementationVersion(),
Microsoft never embraced CORBA and instead chose to push its own DCOM (Distributed
Component Object Model). No language mappings exist for C# and Visual Basic, and
CORBA has completely ignored .NET.
Java works perfectly well over the Microsoft machines. The Microsoft JVM won the PC
Magazine Editor's choice awards in 1997 and 1998 for the best Java support.
Three basic approaches are deeply considered onto Java-.NET class-level interoperability.
First is porting the platform, which means to port the entire .NET platform to Java or vice
versa. In addition, compile the developed code to the alternate platform. Second is cross-
compilation, convert Java or .NET source or binaries to .NET or Java source or binaries.
Third one is bridging which means to run the .NET code on a .NET Common Language
Runtime (CLR), and the Java code on a Java Virtual Machine (JVM) or a Java EE application
server [18].
Another important factor in CORBA’s decline was XML. During the late *90s, XML had
become the new silver bullet of the computing industry: Almost by definition, if it was XML,
it was good.
Using Java and XML through Java Architecture for XML Binding applies a lot of defaults
thus making reading and writing of XML via Java very easy. JAXB is a Java standard that
allows us to convert Java objects to XML and vice versa. JAXB defines a programmer API
for reading and writing Java objects from XML documents. It also defines a service provider
that allows the selection of the JAXB implementation [19].
The on-the-wire encoding of CORBA contains a large amount of redundancy, but the
protocol does not support compression. This leads to poor performance over wide-area
networks.
The specification ignores threading almost completely, so threaded applications are
inherently nonportable (yet threading is essential for commercial applications). CORBA does
not support asynchronous server-side dispatch.

Conclusions
We discussed and analyzed CORBA and Java RMI platforms and their implementation issues.
They have their strong and weak sides and surely, they contain them both. The similarities and

differences among them, for particular issues, vary from slightly different to completely
distinct. That surely is not based only on the implementation differences or programming

01

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

philosophy but the differences are often inherited from the approach on attempting to solve a
problem and the platform design itself.

They both have their advantages and disadvantages and the decision on which we can rely

on is a matter of further discussion based on real needs. For building bigger applications in the
sense of technologies involved and the number of users, CORBA will surely be a wise choice.
On the other hand, for smaller applications and language dependable, Java RMI would surely
do better. Yet, the CORBA’s bad cooperation with XML and .NET is a big handicap having in
mind the large size of the market they cover nowadays.

References

[1]. F. Plasil and M. Stal, ""An Architectural View of Distributed Objects and Components in CORBA,
Java RMI, and COM/DCOM"," A Submission to Software - Concept and Tools, vol. LXVI, 1998.

[2]. G. Coulouris, J. Dollimore, T. Kindberg and G. Blair, "Distributed Systems, Concepts and Design", 5th
ed., Boston: Addison-Wesley, 2012, pp. 185-224, 335-378.

[3]. W. Grosso, "Java RMI, 1st ed., O'Reilly, October 2001, p. 572.

[4]. R. Metkowski and P. Bala, ""Parallel computing in java: looking for the most effective RMI
implementation for clusters"," in Proceedings of the 6th international conference on Parallel Processing
and Applied Mathematics, Poznan, 2006.

[5]. A. Patil, R. Korde and K. Sabharwal, ""Comparison of Middleware Technologies - CORBA, RMI &
COM/DCOM"," [Online]. Available:
https://pdfs.semanticscholar.org/f4a2/2d516dbb7482ab01722760d8da586b87c2a0.pdf. [Accessed 17
May 2017].

[6]. R. Ramos, "Firenze Physics Department and INFN," [Online]. Available:
http://hep.fi.infn.it/JAVA9.pdf. [Accessed 18 May 2017].

[7]. J. Weijia and Z. Wanlei, "Distributet Network Systems, From Concepts to Implementation", vol. XV,
Boston: Springer, 2005, pp. 163-172, 419-425.

[8]. R. Bao. [Online]. Available:
https://pdfs.semanticscholar.org/bfe2/264c88facfddfb87d3563663128a76dd16bc.pdf. [Accessed 10
May 2017].

[9]. W. Zhou. [Online]. Awvailable: http://www.kiv.zcu.cz/~ledvina/vyuka/PSl/literatura/scc751sg.pdf.
[Accessed 18 May 2017].

[10]. Q. H. Mahmoud, ""Java Feature Stories"," Oracle, January 2002. [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/rmi-corba-136641.html. [Accessed 14 May 2017].

[11]. A. S. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", 2nd ed., Pearson
Prentice-Hall, 2007.

[12]. P. Merle, C. Gransart and J. Geib. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.4010&rep=rep 1 &type=pdf. [Accessed 17
May 2017].

[13]. M. Golub and D. Jakubovic. [Online]. Available:
http://www.zemris.fer.hr/~golub/clanci/mipro2005_Parallel.pdf. [Accessed 19 May 2017].

[14]. J. Graba, "An Introduction to Network Programming with Java", Addison-Wesley, 2007, pp. 136-186.

[15]. M. Henning, ""The Rise and Fall of CORBA"," ACMQueue, vol. 4, no. 5, pp. 28-34, 30 June 2006.

[16]. "JDK 5.0 Documentation," [Online]. Available:
http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/socketfactory/index.html. [Accessed 09 06 2017].

[17]. "J2SE SDK/JRE Version String Naming Convention," [Online]. Available:
http://www.oracle.com/technetwork/java/javase/versioning-naming-139433.html. [Accessed 09 06
2017].

[18]. A. Bridgwater, "Bridging the Java to .NET interoperability divide," [Online]. Available:
http://www.computerweekly.com/blog/CW-Developer-Network/Bridging-the-Java-to-NET-
interoperability-divide. [Accessed 12 06 2017].

Q»

Journal of Natural Sciences and Mathematics of UT, Vol. 4, No. 7-8, 2019

[19]. L. Vogel, Vogella GmbH, 06 10 2016. [Online]. Available:
http://www.vogella.com/tutorials/JavaXML/article.html. [Accessed 11 06 2017].
[20]. N. Gray, ""Performance of Java middleware - Java RMI, JAXRPC, and CORBA"," in The Sixth
Australasian Workshop on Software and System Architectures, Brisbane, 2005.
[21].S. Hunt, B. Jeram, M. Plesko and C. Watson. [Online]. Available:
https://www.researchgate.net/publication/2331204 The Implementation of an OO_Control_System
APl with CORBA. [Accessed 20 May 2017].
[22]. C. Munos and J. Zalewski, Kluwer Academic Publishers, 2001. [Online]. Available:
https://drive.google.com/file/d/0BWFWPDFE{jEMZWIoYm9DTm9ImMHM/view. [Accessed 14 May
2017].

o7

