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Abstract

This article is referred to the article of Stigler. That gives the proof of the joint distribution between the sample
mean and the sample variance with the assumption that the population is normally. The machine formula of S*2
has been used during the proof by Stigler, the bivariate distribution is being needed and also the Induction
Theory.

Starting in this context and as part of statistical education, it has been brought a different viewpoint of doing the
proofs of some important results and derivations of the sample mean distribution. It has been changed the
scheme of proof replaying the machine formula with an alternative formula of S*2, which is a less used
definition of the sample variance.

Compared with Stigler this method of proof gives less calculation. It is of interest to know what the covariance
of the sample mean and the sample variance is without the assumption of normality. One method of proof is
being done by Zhang (2007). He did not use the well-known formula of the sample variance, but it has been
used the alternative formula to give the same result in an easer way. It, also, has been used the fact that the third
moment of the sample population exists. The computations were straightforward and did not require advanced
mathematical notions.

Is been showed an example of Poisson distributed to illustrate the fact that the covariance of the joint
distribution of the sample variance and the sample mean were zero, but they were not independent. It has been
constructed a table of joint probability and from this has been displayed the result.

Starting from this example and regarding challenges in teaching Statistics we pretend in the future to apply the
distribution of an average of Poisson random variables in advance Statistics.
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Introduction

In introduction courses in mathematical statistics, the proof that the sample mean X and sample
variance S? are independent when one is sampling from normal populations is commonly
deferred until substantial mathematical machinery has been developed. The proof uses
properties of moment-generating functions, algebra [). As shown in B! all that is needed to
complete the proof are some facts about bivariate normal distribution: two linear combinations
of a pair of independent normally distributed random variables are themselves bivariate normal,
and hence if they are uncorrelated, are independent.

We know the machine formula:

_ 1
"~ (n-1)
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Both numerical and theoretical computations can be simplified from the use of one of the two
equivalent forms of the machine formula:

e — (Z.nz X-)Z
SIL(X = %)? = BN, X, — nXe=gp, X, - T

n

Thus, whether one is dealing with a sample of 100 or 1000 observations the only
computationally demanding part of the calculation of S? is determining the sum of the
sample values and their squares. The machine formula not only simplifies the computation
of S2, but it also permits a simple derivation of the following important result E(S?) = o2.

2. An alternative formula of S? and its uses

This alternative formula S? is less useful for computation purposes than the machine
formula, but it is of considerable theoretical interest. It is defined as:

_1 .
§* = 2n(n-1) =1 Zl'n=1(xi - Xj)z Equation 1

The double summation in Equation 1 can be rewritten in the form:

2 - = 2
?:12?:1(Xi _Xj) = ?:12?:1()(1 _X+X_Xj) - ?:121!1:1(Xi -
X)2+yn, Z]-nzl(i — Xj)2+2n2jn=1(Xj — X)? Equation 2

Recall that Y7L, (X; —X)? = 0, divide Equation 2 by 2n(n-1) and get the formula in
Equation 1.

Let 6= E(X; — w? for j=1, 2, 3, 4 denote the first four central moments of the r.v X.
Using a little algebra we need some preliminary (calculation) results to find out a formula
for Var S? and Cov(S?,X). The following results are well-known:

E(Xl - X]-)2=292
E[(X; — X;)"1=20, + 60,7 (i# )
E[(X; — X))2(Xi — X©)?] = 04 — 0,7 (i# j #k).

These moments are obtained by adding and subtracting p to X;—X; inside the
expectations. Let us consider now alternative derivations of some important theorems
based on formula in Equation 1 for the sample variance.

Theorem 2.1
: 2:. 1 _Dh=3 2
The variance of S* is - (94 — 0, )

Proof: Appealing successively to the fact that
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Var (S%) = Cov (52%,52)

= Cov [2n(n 0 12 (X — ) * Zn(n— 1)Zk 1 2101 (X — Xp)?]
= 7 Cov (T, T (X — X)) Ty Tk (Ko — X0)?)
=m2112k1C0V((X — X% Xk — X))?).

It thus remains only to evaluate all terms Cov((X; — X]-)Z, (Xx — X))?) in the summation

recognizing that these depend solely on the relations between the 1, j, k, | and then counting
how many of each type occur. Specifically, we need only to consider the cases when 1#
j, k # 1 and then the issue becomes whether the (i, j) and (k, 1) pairs have 0, 1 or 2 elements
in common.

If 1, j, k and | are all distinct i.e. the pairs do not have any element in common then (X; —
X]-)2 and (Xx — X;)? are independent. It means that there are n(n— 1)(n— 2)(n — 3)

terms such that Cov ((X; — X;)?, (Xx — X1)*) = 0.

Following the same reasoning, we observe that there are 4n(n — 1)(n — 2) terms such that
Cov((X; — Xj)z, X; — X)D?)= 0, — 922 representing pairs that have only one element in
common.

If the two pairs are the same i=k, j=l, that is for terms 2n(n — 1), we have that:
Cov ((X; — Xj)? (X; — Xj)?) = Var ((X; — X{)?*)
=20, + 26,°
Putting this altogether give the result.

Using the alternative formula in Equation 1 we can compute:

Cov(X, S2) = Cov(X, iz Zk=1 X — X10?)

2n(n 1)

COV( 21 1X1) Zn 1Zk l(X Xk) )

2n2(n 1)

———— 2iik=1 Cov(X;, (Xj — Xi)?).

2n2 (n 1)

The only terms that contribute to the summation are those covariances where j# k but i=
or i=k (otherwise gives 0). Here we have 2n(n-1) such terms:

Cov(X;, (X; — Xk)*)=E((X; — n)*)= 63 we have 2n(n-1) such terms.
Substitution then gives:

Cov(X, S?)=05/n
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Observe that X and S? are uncorrelated if and only if 85 = 0. This does not mean that X and
S2 are independent. Uncorrelation implies independence only when the sample
X4, X5, ..., X, comes from a normal distribution 1.

It is shown in 2007 by Zhang [®! that using the alternative formula gets the result easer less
calculations.

An example

A direct application of the formula above is that; if the population distribution is symmetric
about its mean, also suppose that the third moment exists, then the covariance of the sample
mean is zero. According to this result is possible the construction of numerous examples of
“zero covariance without independence”.

I have applied a no simple (trivial) example where the population distribution is Poisson
with parameter A and the sample size is n=2.

Let X; and X, be a sample of two independent observations drawn from a population
having Poisson distributed. In the table below it is shown the distribution of the discrete
random vector (S2,X). This table can extend to infinity but we can take just one case for
example when,

Table 1. The distribution of the discrete random vector (S2,X)

T
SA2 0 1/2 1 11/2
022
0 e 24 0 A? 0
022 021
1/2 0 2\ \ 0 A?
Y e~ 34
22/
2 0 0 2! 0

2 _1lg_1
P(S° = 2,X = 2)
Let see:
P(S2 = 0| X = 1) = e )2 = PX;=0,X,=0)+ 4= P(S2 =0)

Now, we convinced that we have zero covariance without independence”.
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The goal now is to prove that X and S? are independent using the alternative formula
in Equation 1. Let X{,X,, ..., X,, be independent, identically normally distributed random
variables, i.e X; ~N(u, 0?). Let:

v — n
Xn= —2i=1 X,

2 _ 1 2
Sn - 2n(n—1) {1=1 Z}Ll(xl - X]) .

Recall that the chi-squared distribution x?(k) can be defined as the distribution of U;* +
U22 + ---Uk2 where U;~N(0,1) for i = 1,2,...,nare independent identically distributed
standard normals.

Theorem 2.2

The following propositions are true if X; are indipendent and identically distributed:
_ 2
a) X, has a N(y, %) distribution

b) X,, and S, are independent.

Proof: Proceed by induction. First consider the case n = 2, that is X, = (X; + X,)/2 and
using the alternative formula observe that S,*=(X; — X,)%/2 and (X; — X,)/V2 is N(0, 1).
Point a) in the theorem is an immediate consequence of the assumed knowledge of normal
distributions. Point b) follows from the definition of x?(1). Since cov(X; — X5, X; + X;) =
cov(Xy, X;) — cov(X,, X,) =0, X; + X, and X; — X, are independent and b) follows.

Now assume the theorem holds for a sample of size n. We prove it holds for a sample of
size n + 1. First establish the two relationships:

Xop1 = (X, +Xpi)/(m+1) Equation 3
-1 1 .
Snt1°=( 2_+1) Sn’+ — MH1(Xpe1 — X2 Equation 4

— 2
Now X, and X, ,; are independent, and their distributions are N(}, %) (by the induction

hypothesis) and N(u, o?), respectively. Hence X,,; is a linear combination of two
independent normal random variables, and a) follows by simply computing E X,,,; and Var

Xn+1)-

X441 is independent of S, and X, is also independent of S,,% by the induction hypotheses.
This shows that X, ,, is independent of S,° and b) follows by noting that:

Cov(nX, +Xp41, Z?=+11(Xn+1 —X;))*)=0

The relationships in Equation 3 and 4 are themselves exercises in summation notation. The
relation in Equation 4 is direct, as it is based on the useful consequence X,;; — Xj
=(Xn+1 — Xn)/(0t1).

Formula in Equation 4 follows by expanding S,,,,> using the alternative formula:
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1
I =X =T B (X = X)) e B (K — X))

This proof involves bivariate distribution using the alternative formula of S,%.

Uncorrelated variables are more complex than the independence and orthogonality. Using a
geometric portrayal P! we convince about the relation among independence and
uncorrelated variables.

3. Conclusion

The results obtained from the use of the alternative formula for the sample variance
coincided with those already existing in the literature but the derivation followed is
different. The computations were straightforward and did not require advanced
mathematical notions.
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