UDC: 512.532.5 Conference paper

GREEN'S RELATIONS IN SEMIGROUPS

Merita Azemi¹, Rushadije Halili¹

^{1*}Department of Mathematics, Faculty of Natural Science and Mathematics, University of Tetova, RNM

*Corresponding author e-mail: merita.azemi@unite.edu.mk

Abstract

In this paper, we discuss a very useful tool in the study of monoids/semigroups called Green's relations. At this point, we note that every $\mathbf J$ - class decomposes into a set of $\mathbf R$ - classes as well as into a set of $\mathbf L$ - classes. These facts can be represented by a schema called an "egg-box". We say that a $\mathbf D$ - class (or a $\mathbf H$ - class or $\mathbf R$ - class or $\mathbf L$ - class) is regular if it contains an idempotent and that any two maximal subgroups contained in the same $\mathbf D$ - class of a monoid M are isomorphic. If R is a minimal right ideal and L a minimal left ideal, then $R \cap L$ is a maximal subgroup of S. Also we say that the maximal subgroup of a semigroup S coincide with the $\mathbf H$ - classes of S which contains idempotents. These facts can be represented by a schema called an "egg-box".

Keywords: Semigroup, monoid, classes, ideals, idempotent.

1. Introduction

In the first and second section, we refer to [1], [3], [4] reference. Throughout third section we shall call upon results on Green' relations with egg – box schema in *semigroups* and we refered to the [2], [5], [6] reference.

Definition 1.1 a **L**, $b \Leftrightarrow S^1 a = S^1 b$, $\forall a, b \in S \Leftrightarrow \exists s, t \in S^1$ with a = sb and b = ta.

Definition 1.2 $a \mathbf{R} b \Leftrightarrow aS^1 = bS^1 \Leftrightarrow \exists s, t \in S^1 \text{ with } a = bs \text{ and } b = at.$

Definition 1.3 a H $b \Leftrightarrow a$ L, $b \wedge a$ R b. H = L, \cap R.

Definition 1.4 a **J** $b \Leftrightarrow S^1aS^1 = S^1bS^1 \Leftrightarrow \exists s,t,u,v \in S^1 \text{ with } a = sbt \text{ and } b = uav.$

Definition 1.5 a **D** $b \Leftrightarrow \exists c \in S \ a \ \mathbf{R} \ c \ \mathbf{L} \ b \Leftrightarrow \exists c \in S, a \ \mathbf{L}, c \ \text{and} \ c \ \mathbf{R} \ b.$

2. Connection of Green's Classes

Lema 2.1 $L \circ R = R \circ L$

Proof: Let $m \mathbf{RL}$ n where $m, n \in S$. There exist $p \in M$ such that $m \mathbf{R}$ p, $p \mathbf{L}$ n and by the definitions $u, u', v, v' \in S$: p = mu, m = pu', n = vp, p = v'n. Let q = vm, we than have q = vm = v(pu') = (vp)u' = nu', m = vp = v(mu) = (vm)u = qu. This shows that $q \mathbf{R}$ n.

Also we have m = pu' = (v'n)n' = v'(nu') = v'q. Since q = vm by the definition of q, we obtain $m \mathbf{L} q$. Therefore $m \mathbf{L} q \mathbf{R} n$ and $m \mathbf{L} \mathbf{R} n$. This proves the inclusion $RL \subset \mathbf{R} \mathbf{L}$. The proof of converse inclusion is symmetrical.

Hence the binary relations defined by a **D** $b \Leftrightarrow a$ **L** x **R** b for some $x \in S$

 $\Leftrightarrow a \mathbf{R} y \mathbf{L} b$ for some $y \in S$ is equivalence

relation.

Corollary 2.1 Let $e \in E(S)$ and $e \in R_e$. Then we have

$$a \ \mathbf{R} \ e \Rightarrow ea = a$$
,
 $a \ \mathbf{L} \ e \Rightarrow ae = a$,
 $a \ \mathbf{H} \ e \Rightarrow a = ae = ea$.

Proof: Let G be subgroup with idempotent e. Then for any $a \in G$ we have ea = a = ae and there exist $a^{-1} \in G$ with $aa^{-1} = e = a^{-1}a$. Then

$$\begin{cases} ea = a \\ aa^{-1} = e \end{cases} \Rightarrow a \ \mathbf{R} \ e \quad \text{and} \quad \begin{cases} ae = a \\ a^{-1}a = e \end{cases} \Rightarrow a \ \mathbf{L}, e \quad \Rightarrow a \ \mathbf{H} \ e \text{. Therefore}$$

$$G \subseteq H_e.$$

This in turn implies the well known fact that there is at most one idempotent in each \mathbf{H} - class, for if $e^2 = eHf = f^2$ then e = ef = f.

Lemma 2.2 (Green's Lemma) Assume $a, b \in S$ such that $a \mathbf{R} b$ and let $s, s' \in S$ such that

$$as = b$$
 and $bs' = a$.

Then $\rho_s: L_a \to L_b$ are mutually inverse, \mathbf{R} - class preserving bijections. So if $c \in L_a$, then $c \mathbf{R} cp_s$ and if $s \in L_b$ then $d \mathbf{R} dp_s$.

Proof: If $c \in L_a$ then $cp_s = cs \mathbf{L}$, as = b because \mathbf{L} , is a right congruence. So $cp_s \mathbf{L}$ b therefore $\rho_s : L_a \to L_b$. Dually $\rho_s : L_b \to L_a$.

Lemma 2.3 (Continuing Green's Lemma) For any $c \in L_a$ we have $\rho_s : H_c \to H_{cs}$ is a bijection with inverse $\rho_s : H_{cs} \to H_c$. In particular, put c = a then $\rho_s : H_a \to H_b$ and $\rho_s : H_b \to H_a$ are mutually inverse bijections. For any $s \in S^1$, $\lambda_s : S \to S$ is given by $a\lambda_s = sa$.

Corollary 2.2 If $a \mathbf{D} b$ then there exist a bijection $H_a \to H_b$.

Proof: If then $a \mathbf{D} b$ then there exist $h \in S$ with $a \mathbf{R} h \mathbf{H} b$. Then exist a bijection $H_a \to H_h$ by Green's Lemma and we also have that there exist a bijection $H_a \to H_h$ by dual of Green's Lemma. Therefore there exist a bijection $H_a \to H_b$. Thus any two \mathbf{H} - classes in the same \mathbf{D} - class have the same cardinality.

3. Main results

Definition 3.1 Idempotent of a semigroup S is an element a such that $a^2 = a$. Also we define the set of idempotents in S to be $E(S) = \{e \in S / e^2 = e\}$.

Definition 3.2 $a \in S$ is regular if a = axa for some $x \in S$. a' is an inverse of a' if $a = aa'a \wedge a'aa'$.

Proposition 3.1 In a semigroup $ab \in R_a \cap L_b$ if and only if $R_b \cap L_a$ contains an idempotent.

Proof: First note that in all cases $ab \le a(\mathbf{R})$ and $ab \le b(\mathbf{L}_{\bullet})$. Assume $ab \in R_a \cap R_b$, in particular a $\mathbf{D}b$ and a, b, ab are located as follows in the egg-box picture $D_a = D_b$;

a	ab	
e	ь	_
		_

Then rab=b for some $r\in S^1$ and it follows from Green's Lemma that: $\overline{a}:R_b\to R_{ab}, x\mapsto ax$ and $\overline{r}:R_{ab}\to R_b, y\mapsto ry$ are mutually inverse, \mathbf{L} , - class preserving bijections. Since $a\in R_{ab}$ this implies $ra\in R_b\cap L_a$. Also $rax=x, \forall x\in R_b$, in particular e=ra is idempotent. Conversely assume that $R_b\cap R_a$ contains an idempotent e. Then $a\in S^1e$ and ae=a. By Green's Lemma $\overline{a}:R_e\to R_a, x\mapsto ax$ is an \mathbf{L} , - class preserving bijection. Since $b\in R_e$ this implies $ab\in R_a\cap R_b$. \square

Proposition 3.2 Let S be any semigroup and $a,b \in S$. Then the \mathbf{H} - class H_b contains an inverse a' of a if and only if there are idempotents $e \in R_a \cap L_b$ and $f \in R_b \cap L_a$, in which case e = aa', f = a'a and a' is the only inverse of a in H_b .

Proof: Suppose there is an inverse a' for a in the \mathbf{H} - class H_b . Then we have the egg-box:

a	 aa'
:	:
a'a	 b, a'

So there are idempotents $aa' \in R_a \cap L_b$ and $aa' \in R_b \cap L_a$. In this case a' is the only inverse of a in H_b , for if a'' is another then by uniqueness of idempotents in \mathbf{H} - classes we have the egg-box diagram.

a		aa' = aa''
:		:
a'a=a''a	***	b, a', a''

And so a' = a'aa' = a''aa'' = a''. Conversely, suppose there are idempotents $e \in R_a \cap L_b$ and $f \in R_b \cap L_a$. Then by part (ii) of Green's Lemma since a = af **L**, f there is an element $a' \in R_f \cap L_e = H_b$ such that the egg-box diagram

a	*1*1*1	e = aa'
		1
f	12.00	b, a'

holds and we have aa'a = ea = a and a'aa' = a'e = a' so a' is an inverse of a. By uniqueness of idempotents in \mathbf{H} - classes we have f = aa' and we are done.

Proposition 3.3 Let S be a monoid and let D be a \mathbf{D} - class of S. The following conditions are equivalent:

- (i) D contains an idempotent.
- (ii) Each \mathbf{R} class of D contains an idempotent.
- (iii) Each L_2 class of D contains an idempotent.

Proof: We know that (i) implies (iii) and (ii) implies (iii). Let $e \in D$ be an idempotent. Let R be an \mathbf{R} - class of D. The \mathbf{H} - class $H = L(e) \cap R$ is nonempty. Let n be an element of H. Since n \mathbf{L} e there exist $v, v' \in M$ such that n = ve, e = v'n. Let m = ve'. Then mn = e because mn = (ev')n = e(v'n) = ee = e. Moreover, we have m \mathbf{R} e since mn = e and m = ev'. Therefore, e = mn is in $R(m) \cap L(n)$. This implies, by last proposition that R = R(n) contains an idempotent.

A. **D** - class satisfying one of the conditions of the last proposition is called regular.

Lemma 3.1

- (i) If a = axa then $ax, xa \in E(S)$ and $a \mathbf{R} xa$,
- (ii) If $b \mathbf{R} \neq E(S)$ then b is regular,
- (iii) If $b \mathbf{L}$, $f \in E(S)$, then b is regular.

Proof: We know that (i) is always the truth. (ii) If $b \mathbf{R} f$ then fb = b. Also f = bs for some $s \in S^1$. Therefore b = fb = bsb and so b is regular. (iii) is dual to (ii).

Lemma 3.2 (Regular **D** - class Lemma). If a **D** b then if a is regular, so is b. **Proof**. Let a be regular with a **D** b. Then a **R** c **L**, b for some $c \in S$.

a	0	c
		f
_		\rightarrow
		b

There exists $e = e^2$ with $e \mathbf{R} a \mathbf{R} c$ by (ii) above. By (ii) c is regular. By (i), $c \mathbf{L} f = f^2$. By (iii) b is regular.

Corollary 3.1 $e \mathbf{D} f \Rightarrow H_e \cong H_f$.

Proof: Suppose $e, f \in E(S)$ and $e \mathbf{D} f$. There exists $a \in S$ with $e \mathbf{R} a \mathbf{L} f$.

As $e \mathbf{R}$ a there exists $s \in S^1$ with e = as and ea = a. So a = asa. Put x = fse then $ax = afse = ase = e^2 = e$ and so a = ea = axa. Since $a \mathbf{L}$, f there exists $t \in S^1$ with ta = f. Then xa = fsea = fsa = tasa = ta = f.

Also xax = fx = ffse = fse = x. So we have the diagram

e = axa = axax = xaxf = xa. We have ea = a therefore $\rho_a : H_e \to H_a$ is bijection.

From a **L**, f and xa = f we have $\lambda_x : H_a \to H_f$ is bijection. Hence $\rho_a \lambda_x : H_e \to H_f$ is a bijection. Let $h, j \in H_e$ then $h(\rho_a \lambda_x) k(\rho_a \lambda_x) = (xha)(xka) = xh(ax)ka = xheka = xhka = hk(\rho_a \lambda_x)$. So $\rho_a \lambda_x$ is an isomorphism and $H_e \cong H_f$.

Conclusions

This paper focused in the study of Green's relations through egg-box schema. Using the facts that \mathbf{L} , $\mathbf{R} \subseteq \mathbf{D} \subseteq \mathbf{J}$, that there is at most one idempotent in each \mathbf{H} - class, for if $e^2 = eHf = f^2$ then e = ef = f and that any two \mathbf{H} - classes in the same \mathbf{D} - class have the same cardinality, we show that if $a \mathbf{D} b$ then if a is regular, so is b. Also with the help of egg-box schema we conclude that $H_e \cong H_f$.

References

- [1]. Mario Petrich, "Inverse semigroup"
- [2]. Pierre A. Grillet, "An introduction to the the structure theory"
- [3]. T. Colcombet, "Green's Relations and their Use in Automata Theory", Proceedings of LATA 2011, Spring LNCS6638(2011)1-21
- [4]. Rajalekshmi I.S, "Green's Equivalence Relations on the multiplicative semigroup zn"
- [5]. R. Ramani, M. Azemi, "Inverse semgroups as a special class of regular semigroups"
- [6]. Uday.S. Reddy, "Notes on semigroups", 2014