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Abstract
This paper is a short survey of projective geometry, history of Hamming codes and the relationship between
them and projective planes. The projective plane of order 2, over a finite field

(Fp = {0,1,2,...,p—1},+,*) , which has arithmetic done mod p, denoted by PG(H,]?), is the set of all

subspaces of vector  space F pn. It can be endowed with the distance function
f (U,V):dlm(U)+d1m<V)_2dlm(U mV), which turns P G(}’l, p) into a metric space. A

(”l, M 5 d ) code in projective space is a subset of P G(}’l, p) of size M such that the distance between any

two code-words is at least @ . The first error correction code, the Hamming code, is intrinsic to the projective

plane of order 2 over F. 7 . A connection between planes and codes is given by construction of Hamming code

related to P G(2,2) and we generalize them to P G(3,2) using Hamming and Generator matrix. The codes

constructed in this way are called projective codes.
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Introduction

Let F, be the finite field of order p , which in fact is (F, ={0,1.2,..., p—1},+*) with
arithmetic done by modp and let W be an arbitrary (fixed) vector space of dimension 72

over I, . Since W is isomorphic to /7, , in what follows one can assume that W is in fact
F p" . The projective space of order over /2 , denoted herein by PG (n, p), is the set of all the

subspaces of W , including {O} and itself. In fact it is the set of all subspaces of vector

n

space /), including their isomorphism. Given a nonnegative integerk <n, the set of all

subspaces of W that have dimension A is known as a Grassmannian, and usually denoted
by Gp (n,k). Thus

PG(n,p)= |G, (n.k)

0<k<n

k) = n_?(p” ~Yp 1) (" 1)
o )= T P
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where [ } is the P -ary Gaussian coefficient. It turns out that the natural measure of

distance inP G(Vl, ]7) is given by
f(U,V)=dim(U)+dim(V)-dim(U AV), YU,V € PG(n,p). 1t is well known that the
function above is a metric, thus both P G(n, p) and G, (n,k) can be regarded as metric
spaces. Given a metric space, one can define codes. We say that C gPG(n, p) is a
(n,M,d)code in projective space if |C| = M and f(UV)>d forall U,V inC.1Ifa code is
contained in for some, we say that is a code. If a (n,M ,d )code C is contained in
Gp(n,k)for somek, we say that C is a (n,M,d,k)code. The(n,M ,d), respectively

(n,M ,d ,k), codes in projective space are akin to the familiar codes in the Hamming space,

respectively (constant-weight) codes in the Johnson space, where the Hamming distance
serves as the metric. There are, however, important differences.

. Projective plane

For centuries most geometry was done according to his axioms. The Parallel Line Axioms,
however was a source of contention for many. The axioms states:

Given a line / and a point p not on that line, then there is a unique line containing p which is
parallel to /.

It was not until the 1800’s that Bernhard Riemann suggested that there may not be any
parallel lines at all. It was from this idea that projective plane geometry was developed.

A projective plane is a collection of points and lines which satisfy the following three
properties:

» For any two lines, there is a unique point of intersection.
= For any two points, there is a unique line containing them.
= There are 4 points of which no three are colinear.

One geometric way to describe a projective plane is to start with a 3-dimensional Euclidean
space, and then to project through the origin. The 1-dimensional subspaces of the original
3-space are the points of the projective plane. The 2-dimensional subspaces of the original
3-space are the lines of the projective plane.
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Figure 1. Point and line
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3. Fields
Projective planes can be given coordinates. A plane that has coordinates is called a
coordinatized plane. For the planes discussed in this paper, the coordinates come from an
algebraic structure called a field.

A Field is a set F with binary operations +, * s.t.
a +b = b+ a(addition is commutative).

(a+b)+c=a+(b+c)(addition is associative)

a+0=0+a=a (0is the additive identity)

a+ (— a) =( (every element has an additive inverse).

a*b =b*a (multiplication is commutative).

(a*b)*c =a*(b*c)(multiplication is associative)

a*1=1%a=a (1 is the multiplicative identity)

a* (a_1 ) =1 (every element has a multiplicative inverse).

a*(b+c)=a*b+a*c (multiplication is distributive).

Finite fields exist for prime powers p*. A finite field (F, = { 0,1, 2,....p-1},+,%)has

arithmetic done mod p: Binary arithmetic is done over the field of order 2, which is denoted
.

Example: PG(2,2)

Notice that PG(Z,Z) has 7 points and 7 lines. There are no parallel lines, each pair of lines
shares a unique point, and each pair of points are contained by a unique line. Each line
contains 3 points and each point lies on 3 lines. This plane, sometimes called the Fano
Plane, is coordinatized by F> (the field of order 2). It is also worth noting that the sum of
two points is the third point on that line.

Simple and Coordinatized Fano Plane is given in the Figure 2:

(001)

(100)  (110)  (010)

Figure 2. Simple and Coordinatized Fano Plane

4. The Coding Problem

All considerations in coding theory are based on the following communication model. A
sender wants to transmit data to a recipient. These data are transmitted via a channel that,
despite any amount of care, might not transmit the data unaltered - there might be random
noise, usually due to circumstances beyond the sender's control. Probably everybody has
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experienced the irritation caused by poor reception due to 'atmospheric noise' during a
favorite TV program.

The sender encodes data d into a message ¢ (also called a codeword); this codeword will be
transmitted over the channel. The recipient decodes the message and tries to detect whether
errors have occurred or not. If one uses 'error -correcting codes’, then the original data can
again be reconstructed.

4.1.Hamming code
The message is always a binary string of length n, hence an element of the vector space.
The problem we want to study can be described as follows. The channel adds to the
transmitted vector ¢ (the 'message') an error vector e, so the recipient receives the vector x
= ¢ + e. The recipient's aim then is to decode w, that is, to determine the error vector to
reconstruct ¢ from w.
The Hamming Code consists of two matrices: The Hamming matrix and the Generator

matrix.

1 0 0 O

O 1 0O

01 11100 0 01 0

H=| 1 0 1 1 0 1 0 G=| 0 0 0 1

1 10100 1 01 1 1

1 0 1 1

1 1 0 1

A Connection between plane and code:

1 0 0 0]

= Y OV (e S AL | A | g o100
H=|1011010}|.G=]1000
s S O (I 011
1 0 1
1 1 0

{10007} (110 (010}

The Hamming Code and the projective plane of order 2, the PG(Z,Z) are closely related.
The points of the projective plane make up the columns of the Hamming Matrix H .

For convenience, we arrange H in block form. Let / be the 3 x 3 identity matrix. Let P
be the 3 x 4 matrix with the remaining points of PG(2, 2) as its columns H = [P 1 ]

1
Therefore G is of the form G = { ] . Note that in G, 7 is the 4 x 4 identity matrix.

Example

A code from PG(3,2) consist of 13 points and 13 lines over the field of order 3. To

construct a code from PG(3,2), let 7 be the 3 x 3 identity matrix which corresponds to
three of the points
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of the plane. Then let P be the 3 x 10 matrix with the remaining points of PG(3,2) as its
columns. Hamming and Generator matrix, in this case, have the forms:

0011111111100
H= 11001212121:11:]:[1’!]
1212001122001
1 00 000000 0]
01 0O0DO0DO0DO0ODO0OO0DO
0 01000O0O0O0OUD
00010000O0O0D
000ODO0D100O0UO0OD
0000010000 I
G=|0000001000 :[ }}
000DO0DO0DO0OOT1O00 =
0000O0DO0ODO0OT1O
000D0O0O0DO0TU0DTU D1
0 022222 2%
2200212121
|2 121002 21 4]

-~ (011)

(100T><q0Z>=1101)

Figure 3. The coordinated projective plane
In G.,the matrix / 1s the 10x10 identity matrix. H and G provide a code with a
vocabulary of size 3!° consisting of words which are strings of length 10 with an alphabet
from F,. The code words are length 13 and are attained by multiplication by G: ¢ = Gw.
The code can determine the location and scalar value of a single error.

Using the Hamming Matrix and Generator Matrix we can see how the encoding and error
detection work. We encode a word w with multiplication by G:
1

-P
with multiplication by H.

w
c=Gw :{ }w :{ Pw} , We determine the position and scalar value of a single error

Case I (no error): r =c
A ] |t p-o
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Case II (one error): r=c+e, :[ }Ls[ei], where s € F; and [ei] 1s a vector with 1 in

the i-th positions and 0 elsewhere.
H@_ V;W} esfe ]J _Ip z]ﬂ_ V;W} esfe ]J [Pws (Pl stle ] sife ]

Since sH [ei] is a multiple of the i-th column of H, we know that if there is at most one
error in 7 and Hr is a multiple s of the i-th column of H, that the error is in the i-th position
in 7 and the scalar of the error is s. The codeword can now be recovered, ¢ = r —se,. Note

1 .
that the block form of H = [P 1 ] and G =[ P} help to demonstrate how the encoding

and error detection work; however, these block forms are not necessarily ideal for the error
correction. In practice, we want to choose an ordering which will make it easy to compute s

and e, fromsHe, .

Conclusions

The Reed-Muller codes have played an important role in the application of coding theory;
indeed, they have been used to encode pictures sent from satellites back to Earth. The aim
of the Mariner 9 mission in 1971 was to flyover Mars and photograph its entire surface.
The pictures had to be transmitted to Earth and, obviously, during this transmission, a lot of
errors occurred. The data, therefore, had to be encoded by a very good code; otherwise, all
the details which had been detected with the extremely good optical equipment would have
remained invisible to us. The pictures had a high resolution of 700x832 pixels. Each pixel
became an 8tuple that represented a grey value. These binary data were divided into blocks
of 6 bits each; each block was encoded by a codeword of weight 32; thus one paid the price
of 26 redundant bits in order to correct errors. For this, a first-order Reed-Muller code of
length 64 (generated by all hyper-planes of PG (6, 2) was used, which is a 7-error
correcting code.

During the late 1940s at Bell laboratories, Richard Hamming decided that a better system
was needed. He was allowed to use the computer for research over the weekends. He would
put together his punch cards during the week and submit them to be run over the weekend.
This would work great as long as his punch cards were completely error-free; however, a
single error would cause the computer to pass the job over and move on to the next. He
would have to make corrections and resubmit his program at a later time. Richard
Hamming thought

that if the computer was smart enough to know that there was a mistake, why not have the
computer find the mistake, correct it and continue running the program. He then created the
first error correction code, the Hamming Code.
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