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Abstract

The control of the chaotic dynamical systems of fractional-order has been utilized in various applications in
mechanics, physics, control theory, and other engineering areas. This paper is devoted to a numerical and
theoretical analysis of nonlinear fractional-order systems, namely the chaotic Lorenz and Chen system, with
different topological structure of attractors. We use the method of Multistep Fractional Differential Transform
(FMDTM) as an analytical and numerical method for solving a wide variety of fractional differential equations,
which will increase the interval of convergence for the series solution. In this case, it turns out that the Chen
system is more sensitive to initial conditions than the Lorenz system. We use a reliable algorithm, Fractional
Multistep Differential Transform method (FMDTM) with Drops to compare the results. Numerically obtained
results are analyzed to compare various integration algorithms. The computer simulations demonstrate the
reliability and efficiency of the algorithm developed.

Keywords: Fractional-order differential equation, Lorenz system, Chen system, Fractional Multistep
Differential Transform method, numerical results.

1. Introduction

Fractional calculus is three centuries old. The beauty of this part of the science is that
fractional derivatives (integrals) are not a local (point) property (quantity). The idea of
fractional calculus has been known since the regular calculus, with the first reference probably
being associated with Leibniz and L’Hospital in 1965 where half-order derivative was
mentioned.

At present, the number of applications of fractional calculus rapidly grows, these mathematical
phenomena allow us to describe and model a real object more accurately than the classical
“integer” methods.

The fractional-order calculus plays an important role in physics, thermodynamics, electrical
circuit theory, mechatronic systems, signal processing, chemical mixing, chaos theory, etc.
Abel was the first who wrote a fractional equation for solving the tautochrone problem. In this
paper we focus on the nonlinear fractional systems of the form:

Diix;(t) = fi(x1(), x5 (), wvr, 2 (), 1)

(1) x0)=c¢,i=12,..,n

where the c¢; are the initial conditions, or in its vector representation:
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Dix = f(x)
where q¢ = [q1,q5, .., qn] T for 0 < q; <2,(i =1,2,..,n) and x € R™

The equilibrium points of the system (2) are calculated via solving following equation:
f(x) = 0. Those kind of systems are very interesting to engineers, physicists, and
mathematicians, because most real physical systems are inherently nonlinear in nature,
especially we will discuss about a well-known nonlinear system which exhibits chaos, the
Lorenz system, and its application. The exact solution of those kinds of systems is not
possible to be found, so we solve them numerically by using a different kind of methods.
We use (FMDTM), an analytic and numerical method, currently used, as a technique for
analytic calculating the power series of the solution.

This paper is organized as follows. Section 2 is a brief introduction of fractional calculus.
Section 3 is on the fractional-order system of Lorenz containing the conditions of its
stability. Section 4 is on the numerical method (FMDTM), the part of the theory and
numerical results.

2. Fractional Calculus
Here, we should mention the basics of the fractional calculus, fractional integral and derivative. The
fractional integral of order g for function f(t) can be expressed as follows:

I9f(t) =D = %q) [yt = DT f(D)de

Caputo definition of the fractional derivative of order q is:

DIF(D) = s fo o €= DT f M (@

1
r(n—q)

It is chosen to use Caputo fractional derivative because it allows initial and boundary
conditions to be included in the formulation of the problem, even that for homogeneous
initial conditions, these two operators coincide.

Lorenz system of fractional order,
D x(t) = a(y(t) — x(t))
Di?y(t) = cx(t) — x(t)z(t) — y(t)
D z(t) = x(6)y(t) — bz(t)
Chen system of fractional order,
D x(t) = a(y(t) — x(t))
Dy (t) = (¢ — a)x(t) — x(8)z(t) + cy(t)

ngz(t) = x(t)y(t) — bz(t)
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x(0) = ¢4, y(0) = ¢,,2z(0) = c3, where Dt‘“ are Caputo fractional derivative for i = 1,2, 3,
a,b,c are real parameters and q; € (0,1] the fractional order. In the continuous work, we
will discuss the system where q; = ¢, = ¢35 = q.

Stability as an extremely important property of dynamical systems can be investigated in
various domains, one of them is the frequency domain, but if we deal with incommensurate
fractional-order systems, it is important to bear in mind that P(s%),« € R is a multivalued
function of s%, @ = u/v, the domain of which can be viewed as a Riemann surface with
finite number of Riemann sheets v, where the origin is a branch point and the branch cut is
assumed as R™. It is fact that in multivalued functions only the first Riemann sheet has it
physical significance.

Lorenz system has three equilibria, where one is obviously in origin E;(0; 0; 0) and the
other two are: EZ(\/(bc —-c); \/(bc —c);c—1), Eg(—\/(bc —-c); —\/(bc —c);c—1).

The Jacobian matrix of Lorenz’s system (6) at the equilibrium point E*(x*,y*, z*) is given
by:

—-a a 0
(7) J= [C -z¢ -1 —z*]

We will investigate the fractional -order Lorenz’s system by changing the initial conditions
and showing their numerical methods.

The equilibrium points of the system of Chen with the above parameters are: E;(0;0;0),
E, (7.9373;7.9373;21) and E3 (—=7.9373;—7.9373;21), with Jacobian matrix:

—-a a 0
®) J= [c —-a—z" ¢ —x*]
y* x* —=b

3. Numerical methods

3.1 Fractional Multistep Differential Transformation Method

An important part of the paper is to present approximate analytical solutions for the Lorenz
system with fractional-order (5). The fractional multistep differential transform method
(FMDTM) is a numerical method based on the Taylor series expansion which constructs an
analytical solution in the form of a polynomial. The traditional high order Taylor series
method requires symbolic computation. However, the differential transform method obtains
a polynomial series solution using an iterative procedure. Firstly, expand the analytic
function f(t) in terms of fractional power series as follows:

) f(&) = Zilo F(k)(t — t)*d
Where 0 < g < 1 is the order of fractional derivative and F (k) is the fractional differential

transform of f(t), is given as

1

(10) F() = 7= [ (08) (£ (to))]
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where (Df )k = Dg . DL? St Df the k-times differential Caputo fractional derivative. In
0 0 0 0

our application, we will approximate the function f(t) by the finite series, so the finite
form of (9):

N
£ = D FUOE — o)
k=0

We apply the (FMDTM) and the differential transformation for the Lorenz system is:

r'gk+1)+1)
I'(gk+1)

X(k+1) =a(Y[k] — X[k])

riqk+1)+1)
r'(gk +1)

k
Yk +1) = cX(k) — Zxa)zac N
=0

rqtk+1)+1)
I'(gk+1)

k
Z(k+1) = ZX(I) Y(k — 1) — bZ(k)
=0

where X(0) = ¢,,Y(0) = ¢, Z(0) = c5.

k
If we consider the fractional order series f(t) = x(t) = YN _,F(m)(t — ty)=, then the
transformed method has the following form:

k
r(5+1) X(k+1) = a(Y[k] — X[k])
F(q+1+5)
k k
F(a+1)k y(k+1):cX(k)—zX(l)Z(k—l)_Y(k)
F(q+1+a) =0
k k
r(g+ 1)k Z(+1) = zx(l) Yk — 1) — bZ (k)
r(g+1+7) =0

Numerical results for a system (5) are taken using the 10-order solutions with the inverse
transformation. We will name them Ilike (FMDTM) and (FMDTMI). The same
transformations we use for the second system, fractional-order Chen system.

4. Numerical results
We will consider the valuesa = 10, b = g, ¢ = 28, for the Lorenz system and a =35, b =

3, and ¢ = 28 for the Chen system, usual cases, but investigated in different ways. We took
the risk to show how the (FMDTM) and (FMDTMI1) methods will act, on the initial
conditions x(0) = 10, y(0) = 1 and z(0) = 0.1 for an fractional-order from interval(0,1],
which is g = 0.8, even that the conditions to have chaos is g > 0.994. We observe the
approximated solutions of the both systems (5) and (6), with above-mentioned parameters,
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using two numerical methods (FMDTM) and (FMDTM1). The purpose is to compare the
results for each fractional-order and showing that in which conditions they are in good
agreement with each other by plotting them, using Mathematica 11.0 Package.

We will share the results on time interval [0,10], with step size h = 0.001, for x(t), y(t)

RIETL

||

x(t), with h=0.001, x(0)=10 and t€/0,10]. v(t), with h=0.001, y(0)=1 and t€[0,10]

Figure 1. The Lorenz system’s time-series
with standard attractor @ = 10, b =8/3, and
¢ = 28, initial conditions, x(0) = 10, »(0)
=1 and z(0) = 0.1, same fractional-order
v=0.8 and same step-size #=0.001.

y(t), with h=0.001, y(0)=1 and t€[0,10]

.

ABS[ FMDTM-FMDTM]I] for x(t) ABS[ FMDTM-FMDTM]I] for y(t)
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2

ABS[ FMDTM-FMDTM]I] for z(t)

x(1), with h=0.001, x(0)=10 and t€/0,10].

v(t), with h=0.001, y(0)=1 and t€[0,10]

Figure 2. Absolute difference for the time
series x(t), y(t) and z(t) of the fractional-
order Lorenz system , for v =0.8. The step
size is h =0.001 and ¢ € [0,10].

y(t), with h=0.001, y(0)=1 and t€/0,10]

Figure 3. Chen system’s time-series with
standard attractor a = 35, b =3, and

¢ =28, initial conditions, x(0) = 10, »(0)
=1 and z(0) = 0.1, same fractional-order
v=0.8 and same step-size #=0.001.

.

ABS[ FMDTM-FMDTM]1] for x(t)
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ABS[ FMDTM-FMDTM]1] for y(t)
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Figure 4. Absolute difference for the time
series x(t), y(t) and z(t) of the fractional-
order Chen system , for v = 0.8. The step
size is £ =0.001 and 7 € [0,10].

ABS[ FMDTM-FMDTM]] for z(t)

5. Conclusions

In this paper, two different numerical approximation schemes (FMDTM and FMDTM1)
have been applied to find the time-series solutions of the fractional-order Lorenz and Chen
system. We have aimed to quantify the distinction between the integration methods by
depicting the time series of the absolute difference for the same system parameters and
initial conditions, with the order of the fractional derivative v=0.8. The results show that
(FMDTM) and (FMDTM1) methods are in excellent agreement, but they start to differ
after the length /=6 of interval (0,10).
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