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Abstract
We will consider the problem of numerical quadrature of a definite integral in cases where the integrand is not

explicitly known, ie it is given in the form of tabular data or as a points (%;,3,) , or when the function can not be
integrated with elementary algebraic transformations. We will briefly describe the Newton-Cotes integration formulas
and their corresponding error estimates. Furthermore, we will provide a general form of Gauss quadrature formulas in
which weight functions are orthogonal polynomials. In this paper, we will consider numerically integrating Gauss-
Legedre's formulas, that is, when the weight function is in the Legendre polynomial class. We will show two ways to
generate Legendre polynomials and some of them will be graphically presented. Using the Mathematica program
package through specific examples for numerical computation of the integral, when comparing the results with
classical Newton-Cotes formulas, it turns out that Gauss-Legedre's quadratures give apparent better results in
evaluating the error of the method, as well as with a reduced number of steps in executing the algorithm to achieve the
required accuracy.

Keywords: Numerical integration methods, Newton-Cotes formulas, orthogonal polynomials, Gauss-Legendre
quadrature, error estimates.

Introduction
If the function f:7 —I[] is continuous and F:7 —[] is any primitive function of the function f

on interval / , then for each segment [a,b] < / it is valid,
b
[ f()dx = F(b)-F(a).

The given formula is the Newton-Leibniz formula for computing the Riemann integral of the
function / on the segment[a,b].

In the various applications of a definite integral, it has not been possible to calculate integral with
this formula. The reason is that a large number of functions can not determine the primitive
function in an elementary way or is very difficult to find. Furthermore, often in applications,
function f is given in the form of tabular data or as a solution of the differential equation. To
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calculate the integral of such functions, there is a need to introduce numerical methods by which
we approximate the values of these integrals.

Below we provide examples of several functions whose integral can be calculated solely by
numerical methods.

Example 0.1. In probability theory, integrals are often encountered, which are not be resolved
explicitly, but some numerical methods are needed. One such example is the distribution function
of the standard normal distribution, which is accounted for as:

G(x)= e2 dt (xel).

.

Example 0.2. Fresnel integrals, designated as functions /(x)and /.(x), and their application in

physics and technique: 7, (x) = Isin (% t* jdt, (x el +)
0

. I T o +
IC(x)—_([cos(Et )dt, (xeD )
Therefore, when the integral value can not be exactly computed by standard procedures, we use
numeric methods.

Numerical methods
The basic idea of all methods is to compute the approximation of the integral

J Feoas

using the function values in points x,, where x, €[a,b] for i=1,2,...,n
One of the obvious ways of solving this problem is to approximate the function f with a simple,

easy-to-integrate function, most commonly by interpolation polynomial. The symbol for the
approximation of the integral will be /*, and in general we can write it as

r=Y o).

Such a record is called a numeric quadrature formula or a numerical integration formula. The next

important term that appears is

the error of approximation. We will mark it with
E=AI'=

For each method, the error rating will be defined. Here will be briefly explained the trapezoidal

rule and Newton-Cotese's formula, so that we can compare them in this paper with Gaussian

quadratic formulas.

Generalized trapezoidal formula
If the continuous function 7.7 [ is replaced by the first-degree polynomial in the interpolation
points (a, f(a)), (b, f(b)), then the approximation is:
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b—a
2

I"=

(P)

pi(x)dx = [/(®)~ f(a)]

Q — >

For error estimation can be taken

< max| ()] &= )

as<x<b 12n2
In the equidistant division of the interval[a,b], the formula (P) is applied to each small segment of

E=AI" =\1—1*

the [x,_,,x;] and an approximation of the generalized trapezoidal formula is obtained

. _b-a
! =7[y0+2(y1 +"'+yn—1)+y"] ’

Generalized Simpson formula
If in the segment [a,b]except the end points a and 5, we also take the middle point a—;b, then

the function f at the interval / is replaced by the polynomial of the second degree p,(x) passing
through these points. In this case, the approximation of the integral is

b b—a a+b
I" = Ipz(X)dx = T[f(a)+4f( 5 )+f(b)}
S “
Error estimation 1s
E=AI' =|[-I'| <max f“‘)(x)\-M.
asx<h 180#*

When the formula (S) is applied to each [x,_,,x;] division, the approximation of the generalized
Simpson formula is obtained:

. b—a
{ :7[320 2y, + Y, +et Y, ) 40+ s +"'+yn—l)+yn]'

Gaussian quadrature formulas

In previous methods, we used the given n-nodes to accurately calculate the integral value using the
interpolation polynomial of degree at most n. We wonder if we can construct formulas by which
we calculate integrals of polynomial whose degree is greater than the interpolation polynomial.
This property will have Gaussian quadrature.

Gaussian integration formulas are generally of a form

[0 fde= 0,0/ (x)
*)

where @(x)is a weighting function, positive or at least non-negative and integrable on [a,b], @,(x)

are weight coefficients, and x, integration nodes. In this paper we will use a special case, when
a(x)=1. Depending on the choice of weight function, the Gaussian formula assumes a different

form and name.
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weight function w(x) interval formula
1 [-11] Gauss-Legendre
| [-1,1] Gauss-Chebyshev
1-x*
e’ [0,+0) Gauss-Laguerre
e (00, +0) Gauss-Hermit

Definition. The degree of accuracy of the quadrature formula is the largest number of m [l such
that E(x*)=0, for each k=0,1,...,m, butis E(x* +1)#0.

The value of the integral 7 = j f(x)dx is approximated by a quadrature formula which is generally
in the form ”

=3 0,0/,
We want this formula to be the degree of pre:ilsion m, that is, it is valid

b n
kadx—waxf =0, foreach k=0,1,...,m.
" =1

Gauss-Legendre's quadrature formula

We will use a family that consists of Legendre's polynomials, defined in the [—1,1] segment. As
the process does not generally depend on the area of integration, we will use substitution

_b—a,  b+a

S22 2

X

From which it follows

_ff(X)dxzb;a jf(b;awrb;ajdt

Let us denote the

b—a b+a
t)= t+ ,
#(7) f( 2 2 j
using the formula (*), we get an approximate quadratic formula
. b—a
I'==—=2 o4@).
i=1

Remark. Coefficients of @, and ¢, nodes are unknown to us. Nodes will be counted as the null

Legendre polynomials.

For two functions f, g :[a,b] —[] , we say that they are mutually orthogonal if they are valid

fg=[rf()-g(x)dx=0.
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One of the methods of constructing Legendre polynomials is the Gram-Schmidt method of
orthogonalization of the canonical base of {l,x,xz,...} .

So obtained polynomials are

B -1
R(x)=x- ((}’%’,’;20)) B =x

P2<x)=x2—S,;—;E;‘Mx)—%-mx)%(sxz—l)
1’3(x)=x3—%-%(X)—%'R(x)—g;—gﬂ(x)=---=%(5x3—3x)

P(x)=x* —g,;—;f;-m)— (();f:)) -R(x)—fg:g -@(x)—fg,’g P == (5 3047 +3)

Figure 1. Graphic view of the first five Legendre polynomials

Nodes integration count as zeros of polynomials £, R, P, P, F,,...
Example. Calculate integration nodes for » =3. Searching for zeros of Legendre polynomial £ of

the third degree.

Zeros, or nodes integration are:

It still remains to calculate the weighted coefficients ,.

Let x, €[-1,1] and let
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e x)e(x—x_  )(x—x,).(x—X,)
Prosi = (= x)e (X, —x, (X, —x,,,)een(x, — X))

The polynomials p, ,, are Lagrange's interpolation polynomials of degree (n—1), hence the

Gaussian quadrature formula calculates exactly their integrals.

1 n
J‘ pn—l,i dx = Z a)ipn—l,i
—1 i=1

Since the
pn—l,i(xj) = 51,/
From which it follows

1
j pn—l,i d‘x = a)z *
-1

In the example above, for n=3, we compute nodes, now we calculate the weight coefficients
according to the formula

1 1 1
o} :_[Pz,l dx=I (X = %)(x=x,) dxz%f{xz—\/%dex:...:g
-1 -1

(%, —x,)(x, = x3) |

(02:1 (x—x)(x—x;) dr=. =

21 ()C2 _xl)(xz _x3)

j’ (x_xl)(x_xz) dx =

C()S =
5 (6 =x)(x; — x,)

Oolwn ol

Note. The integration nodes are located in symmetrical points with respect to origin, and the
coefficients of symmetric nodes are equal.

Lema 1. Each Legendre polynomial of degree 7 is orthogonal to polynomial degree <.
Lema 2. Let the weight coefficients be given by the formula

1
a)i = J.pn—l,i dx
-1

Then the quadrature formulas exact for polynomials of degree n—1.

Theorem 1. Let the coefficients of the quadrature formula be calculated by Lema 2 and let the
nodes of the formula be a zeros of the Legendre polynomial P (x). Then this formula is exact for
the polynomial of degree 2n—1.
Theorem 2. Let / € C*" ([a,b])be the given function. Then there is a point ¢ €[a,b] such that for
the Gaus-Legendre error estimation method integration is valid
n+ 4
E - (b_a)2 l(n!)3 f(Zn)(C)‘
2n+1)((2n)!)

In the following table are listed the calculated values of integration nodes and weights for several
cases.
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n=2
X = ~1/\3 o =1
X, 1.3 w, =1
n=3
x =—B/5 © =5/9
x,=0 w,=8/9
X, =35 0, =5/9
n=4
x, =—0.861136 o, =0.347855
x, =—0.339981 o, =0.652145
x, =0.339981 o, =0.652145
x, =0.861136 o, =0.347855
n=>5
x, =—0.90618 o, =0.236927
x, =—0.538469 o, =0.478629
x,=0 o, =0.568889
x, =0.538469 o, =0.478629
x; =0.90618 o, =0.236927

Table 2. Gauss-Legendre quadrature formula

Numerical experiments and results

Example 1. Calculate the integral of the function f(x) =+/1 + 3x on the [0,1] segment using the
Gaus-Legendre method at 3 integration points.

We compute

1
1 :J‘\ll + 3xdx

0
Since Gauss-Legendre's method is defined in the [—1,1] segment, we make a substitution
_b—a, 6 b+a
2 2

1 1¢/5 3
I =[J1 + 3xdx=— ,/—+—tdr.
! * 2_{ 2 2

The approximation of integral / is

X

Soitis
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Include the data from the table above and as a result we get /* =1.55561. The exact value of the

integral is 7 = 14 ~1.55556 . Error in this case is
9

E,=|I-I

=[1.55556—1.55561| = 0.00001=10"°.

Also, we can calculate the error estimation based on Theorem 2:
PN CETONEDY

(6)
3 7. (6')3 f (C)
_ (b—“)7 (6
= 20160007

Comparison of methods

Example 2. Let the default function f(x) = xe’* be on the [0,4] segment. Applying the
Newton-Leibniz formula, was obtained:

4
I= jxe“dx 7oL 5016.92648.
) 4 4

We will use the Gauss and Newton-Cotes formula to see how many steps we can get a result with
an error of less than 0.01.

n Gauss-Legendre Newton-Cotes
1 436.785 23847.66390
2 3477.54 8240.41143
3 4967.11 6819.20880
4 5197.54 5499.67970
5 5215.99 5386.62015
6 5216.90 5239.58047
7 5216.93 5231.31978
8 5216.93 5218.33122
9 5216.93 5217.84756
10 5216.93 5216.99337

For Gauss quadrature formulas, for n» =4, we have an error of 0.0037 , while for Newton-Cotes
formula only for » =6 achieves error which is less than 0.01, i.e. 0.0043.

1o
Example 3. Let the f(x) = e 2 function be assigned to the [0,4] segment. Function / is an
example of a function whose integral can not be exactly calculated. Using the error estimates for
the extended trapezoidal and Simpson formula, we calculate the number of steps required to
achieve accuracy of £=0.001.

Generalized trapezoidal formula: If M, = ma)z| f"(x)

, then from the formula for estimating the
error of approximation
(b-ay

E|<
| "| 12n*

M, <e

let’s calculate
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n>(b—-a) /b_"M2 =4 /Lo.m ~36.51.
12¢ 12-0.001

The smallest » which achieves the required accuracy is »=37.

Generalized Simpson formula: If M, = max | /¥ (x)|, then from the formula for estimating the
asx<b
5
error of approximation |E, | < MM <&
180n*
we calculate
b-a 4
n>(b-a)s M, =4-3}—————0.063 ~4.35.
180¢ 180-0.001

The smallest » which achieves the required accuracy is n=35.

Gauss-Legendre formula:
4

A

P (b_a)2n+l (n')
Qn+1)((2n)")

For n=3it follows

7 | 4

E, < 4°(3 .)3

7-(6!)

Gaus-Legendre method for » =3 achieves the required accuracy.

M, ~0.00025

Conclusion

With Gaus-Legendre's quadrature formula, in both cases, we achieve the required accuracy much
faster. Gaussian quadrature formulas are used to achieve the maximum degree of accuracy in the
approximate computation of definite integrals.
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