# A NOTE ON A RESULT ABOUT SKEW BINORMAL OPERATORS 

# Krutan Rasimi ${ }^{1}$ <br> ${ }^{\text {1* Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Tetova }}$ 

*Corresponding author e-mail: krutan.rasimi@unite.edu.mk


#### Abstract

In this paper we will give some counterexamples that will show that class of binormal operators and skew binormal operators are independent. Even more, that the class of $n$-binormal operators and skew $n$-binormal operators are independent. This would be used to achieve our aim to shown that a result in [2] is not correct.


Mathematics subject classification 47B20
Keywords: binormal, $n$ - binormal, skew binormal, skew $n$ - binormal

## 1. Introduction

Throughout this paper $H$ it is a Hilbert space and $B(H)$ is the algebra of all bounded linear operators acting on $H$. If $T \in B(H)$, then with $T^{*} \in B(H)$ we denote the adjoint of $T$. Operator $T \in B(H)$ is binormal if $T^{*} T$ commute with $T T^{*}$, that is if $\left(T^{*} T\right)\left(T T^{*}\right)=\left(T T^{*}\right)\left(T^{*} T\right)$. About class of binormal operators the reader can see [1]. On definition and some properties of skew binormal operators can see [2]. The class of skew $n$-binormal operators was introduced in [4]. The formal definitions of operators mentioned above are given bellow.

Definition 1.1. [1] An operator $T \in B(H)$ is binormal if $\left(T^{*} T\right)\left(T T^{*}\right)=\left(T T^{*}\right)\left(T^{*} T\right)$.
Definition 1.2. [2] An operator $T$ is skew binormal operator if $\left(T^{*} T T T^{*}\right) T=T\left(T T^{*} T^{*} T\right)$.
Definition 1.3. [3] An operator $T$ is $n$-binormal operator if satisfy $T^{*} T^{n} T^{n} T^{*}=T^{n} T^{*} T^{*} T^{n}$. We denote this class with [ $n B N$ ].

Definition 1.4. [4] An operator $T$ is skew $n$-binormal if $\left[T^{*} T^{n} T^{n} T^{*}\right] T=T\left[T^{n} T^{*} T^{*} T^{n}\right]$. We denote this class with [ $s n B N$ ].

## 2. Main result

In article [2], in Theorem 2.2. authors claim that if an operator is binormal, then it is a skew-binormal one. In this point, we have some counterexamples that deny this claim. In fact, an operator can be binormal, but doesn't need to be a skew-binormal operator as shown example bellow.

Example 2.1. The first part of this example is in [4]. Let

$$
T=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

Then, $T$ is a binormal operator. Indeed, we can calculate to find that

$$
T^{*} T T T^{*}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]=T T^{*} T^{*} T
$$

But, on other side we find that

$$
\left(T^{*} T T T^{*}\right) T=\left[\begin{array}{ccc}
0 & 0 & 2 \\
4 & 4 & 0 \\
2 & -2 & 0
\end{array}\right] \neq\left[\begin{array}{ccc}
0 & 0 & 2 \\
2 & 4 & 0 \\
2 & -4 & 0
\end{array}\right]=T\left(T T^{*} T^{*} T\right)
$$

which prove that such an operator is not skew binormal one.
It is not the only one operator (matrix) with this property. Every matrix, real or complex, let denote by

$$
T=\left[\begin{array}{ccc}
0 & 0 & a \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

is binormal, but not skew binormal. Indeed, calculating, with

$$
T^{*}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & -1 \\
\bar{a} & 0 & 0
\end{array}\right]
$$

we find that

$$
T^{*} T T T^{*}=\left[\begin{array}{ccc}
2|a|^{2} & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2|a|^{2}
\end{array}\right]=T T^{*} T^{*} T
$$

which proves binormality. On the other hand we have

$$
\left(T^{*} T T T^{*}\right) T=\left[\begin{array}{ccc}
2|a|^{2} & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2|a|^{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & a \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 2 a|a|^{2} \\
4 & 4 & 0 \\
2|a|^{2} & -2|a|^{2} & 0
\end{array}\right]
$$

and

$$
T\left(T T^{*} T^{*} T\right)=\left[\begin{array}{ccc}
0 & 0 & a \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2|a|^{2} & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2|a|^{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 2 a|a|^{2} \\
2|a|^{2} & 4 & 0 \\
2|a|^{2} & -4 & 0
\end{array}\right]
$$

It is clear that, in general, $\left(T^{*} T T T^{*}\right) T \neq T\left(T T^{*} T^{*} T\right)$ which proves that such a matrix is not skew binormal one.

Example 2.2. The first part of this examples is in [4]. An operator can be skew binormal (skew $n$ binormal), but need not to be binormal ( $n$ - binormal). The matrix

$$
T=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

is not 2-binormal because

$$
T^{*} T^{2} T^{2} T^{*}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=T^{2} T^{*} T^{*} T^{2},
$$

but is it a skew 2-binormal operator as shown this calculating

$$
\left(T^{*} T^{2} T^{2} T^{*}\right) T=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
T\left(T^{2} T^{*} T^{*} T^{2}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

That is $\left(T^{*} T^{2} T^{2} T^{*}\right) T=T\left(T^{2} T^{*} T^{*} T^{2}\right)$.

Taking a family of matrix (real or complex) represented by $T=\left[\begin{array}{lll}0 & 1 & a \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, we can easily see that $T$ is not 2-binormal operator, because

$$
T^{*} T^{2} T^{2} T^{*}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
\bar{a} & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
\bar{a} & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \bar{a}
\end{array}\right]\left[\begin{array}{lll}
\bar{a} & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
T^{2} T^{*} T^{*} T^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
\bar{a} & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
\bar{a} & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
\bar{a} & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \bar{a}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

On the other hand we find that
$\left(T^{*} T^{2} T^{2} T^{*}\right) T=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & a \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and
$T\left(T^{2} T^{*} T^{*} T^{2}\right)=\left[\begin{array}{lll}0 & 1 & a \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ no matter what the value of $a$ is, which means
skew 2-binormality.
We resume that, the condition at Theorem 2.2. [2] is weak to guarantee the skew binormality, and must be improved.

Our conclusions can be formulated in following propositions.
Proposition 2.3. The class of binormal operators and skew binormal operators are independent.
Proposition 2.4. The class of $n$-binormal operators, [ $n B N$ ], and skew $n$-binormal operators, [ snBN ], are independent.

## References

[1]. Campbell, S.L, (1972) Linear operators for which $T^{*} T$ and $T T^{*}$ commute, Proc. Am. Math. Soc., 341, $74-$ 80.
[2]. Meenambika, K., Seshaiah C.V, \& Sivamani, N., (2018) Skew binormal operators acting on a Hilbert space, IOP Conf. Series: Journal of Physics: Conf. Series 1139, 012056 doi:10.1088/1742-6596/1139/1/102056.
[3]. Panayappan, S., \& Sivamani, N., (2012) On $n$ - binormal Operators, Gen. Math. Notes, Vol. 10, No.2, 1 - 8 .
[4]. Rasimi, K., Seferi, Y., Ibraimi, A., \& Sadiki, F., (2019). Skew $n$ - Binormal Operators, International Journal of Mathematical Analysis, Vol. 13, No. 11, 513-517.

