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Abstract 

This paper is an introduction and survey of numerical solution methods for stochastic differential equations. In 
mathematics and computational sciences, the Euler method is a first-order numerical procedure for solving ordinary 
differential equations (ODEs) with given initial value, in SDEs Euler approximations give one of the best results 
after working with an approximation method. 
Also, to the Stochastic Differential Equations (SDEs) one of the simplest time discrete approximation of an Ito 
process is the Euler approximation, or called the Euler-Maruyama approximation. We shall consider an Ito process 

0,tX X t t T satisfying the scalar of a SDE. And to illustrate various aspects of the simulation of a time 

discrete approximation of an Ito process we shall examine a simple example by using Excel Simulation and 
MathLab Simulation. 
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1. Introduction 

What are Ito Stochastics? 

The stochastic calculus of a Ito originated with his investigation of conditions under which the 
local properties of a Markov process could be used to characterize this process. By local properties 
here we mean quantities such as the drift and the diffusion coefficient of a diffusion process. These 
had been used some time earlier by Kolmogorov to drive the partial differential equations, which 
now bear his name. 

equations, which until had been inadequate. 
An ordinary differential equation 

 

.

,
dx

a t x
dtx  

May be thought of as a degenerate form of a stochastic differential equation, as undefined and as 
a randomnees. We can write (1) as a integral equation 
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Where 0 0; ;x t x t x t  is a solution satisfying the initial condition 0x x . 

 2. Brownian motion  

2.1. Definition of Brownian motion. Brownian motion is closely linked to the normal distribution. 
Recall that a random variable X is normally distributed with mean and variance 2  if 
 

2

2

( )

2

2

1

2

u

x

P X x e    for all x. 

 

Definition 2.2 

A real-valued stochastic process : 0B t t is called a (linear) 

Brownian motion with start in x R  if the following holds: 

 0B x  

 the process has independent increments, i.e. for all times 1 20 ... nt t t the increments 

1 1 2 2 1, ,...,n n n nB t B t B t B t B t B t are independent random variables, 

 for all 0t  and h  > 0, the increments B(t+ h ) - B(t) are normally distributed with 
expectation zero and variance h  

 almost surely, the function t B t  is continuous. 

We say that : 0B t t  is a standard Brownian motion if  x = 0. 
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Figure 1. Graphs of five sampled Brownian motions 

 

 

Figure 2. Nature Brownian Motions 

3. The Euler Approximation 

One of the simplest time discrete approximations of an Ito process is the Euler approximation or 
the Euler-Marutama approximation as it sometimes called. We shall consider an Ito process 

0,tX X t t T satisfying the scalar stochastic differential equation  

                                                        t t t tdX a X dt b X dW                                                  

(3.1)
 

On to 0t t T with the initial value  
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0 0tX X                                                                        

(3.2)                     

For a given discretization 0 0 1 ... ...n Nt T  of the time interval 0 ,t T , an Euler 

approximation is continuous time stochastic process 0,Y Y t t t T satisfying the iterative 

scheme 

                     
11 1, , ,

n nn n n n n n n nY Y Y b Y W W  for n N-1             

(3.3) 

With initial value   0 0Y X  

Where we have written n nY Y , and for the value of the approximation at the discretization 

time n . We shall also write 

                                                          1n n n                                                                       

(3.4)   

For the n th time increment and call like:  

                                               max n  the maximum time step                                             

(3.5) 

When the diffusion coefficient is identically zero, that is when 0b , the stochastic iterative 
schema (3.3) reduces to the deterministic Euler schema (3.1) for the ordinary equation  

,
dx

a t x
dt

, and the sequence , 0,1, 2,...,nY n N  of the Euler approximation (1.3) at the 

instants of the time  discretization ( ) 0,1,...,n N can be computed in a similar way to 

those of the deterministic case. 

Time discrete simulation 

To illustrate various aspects of the simulation of a time approximation of an Ito process we shall 
examine a simple example in some detail. We shall consider an Ito process 0,tX X t t T

satisfying the scalar stochastic differential equation 

t t t tdX a X dt b X dW
 

for 0,t T  with the initial value 0X . 

 

Application 
Now we will see how dose a simulation work in excel:  
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We will generate equidistant Euler approximations on the time interval [0,1] with equal step size 
22  for the Ito process X satisfying (3.1) with 0 1.0X  and 1.5a  1.0b . 

 

 

 

 

3.1 Euler simulation with 200 points, in Excel 
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4. Strong and Weak Convergence of the EM Method.  

In the example above with em.m the EM solution matches the true solution more closely as t  is 
decreased convergence seems to take place. Keeping in mind that X( ) and Xn are random 
variables, in order to make the notion of convergence precise we must decide how to measure their 
difference. Using | |,E Xn X n  where E  denotes the expected value, leads to the concept of 

strong convergence. A method is said to have strong order of convergence equal to if there exists 
a constant C such that: 

 

E|Xn  X( ) C    (4.1) 

for any fixed = n t  [0, T t sufficiently small. If f and g satisfy appropriate conditions, it 

can be shown that EM has strong order of convergence 
1

2
 

Note that this marks a departure from the deterministic setting if g 0 and 0X  is constant, then 

the expected value can be deleted from the left-hand side of (4.1) and the inequality is true with 
= 1. 

In our numerical tests, we will focus on the error at the endpoint t = T, so we let estrong 

 

( ) ,strong
t Le E X X T   where  L t T                                                           (4.2) 

denote the EM endpoint error in this strong sense. If the bound (5.1) holds with 
1

2
at any 

fixed point in [0, T], then it certainly holds at the endpoint, so we have  

 

1/2strong
te C t                                                                          (4.3) 

 

t. 

The M-file emstrong.m in Listing 6 looks at the strong convergence of EM for the SDE  using 
the same , , and 0X   as in em.m. We compute 1000 different discretized Brownian paths over 

[0, 1] with = 2 9. For each path, EM is applied. 
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