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Abstract 
 
In this paper we investigate paramedial Archimedean  semigroups  with idempotent. Firstly we give some 
general notations, definitions and auxiliary facts  related to semigroups. A semigroup  is called Archimedean  
if and only if for all , there exist  and  positive integers  such that  and . 
A paramedial semigroup is a semigroup   satisfying the paramedial  law  for all . 
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1.Introduction 

Petar V. Protiç [2] and N. Sawatraska; Ch. Namnak [3] introduced the concept of paramedial 
semigroups. They investigated that some general properties of paramedial and medial semigroups 
and semilattice decomposition of paramedial and medial semigroups.  
We present a number of definitions and notations most of which will be indispensable for our 
research. 

Definition 1. A semigroup is a set  together with a binary operation 
the associative property: For all  the equation  holds. 

Definition 2. A direct product of a rectangular band and a group is called a rectangular group.  

Definition 3. A semigroup  is called Archimedean if and only if for all  there exist 
 and positive integers  such that  and .  

Definition 4.  A paramedial semigroup is a semigroup     satisfying the paramedial law 
 for all . 

Lema1.[1]: Every paramedial semigroup is medial. 

Definition 5. Let  be an Archimedean semigroup without idempotent. 

We define a congruence on   for fixed  as follows.We define  if and only if  there 
are positive integers  and   such that  
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Definition 6. An idempotent in a semigroup is an element  such that . The set of 
idempotents of  is denoted by . Two special idempotents are the identity element, if it exists, 
and the zero element, if it exists. 

 

Theorem 1[1]. A semigroup is a rectangular group if and only if it is a completely simple 
semigroup in which the idempotents form a subsemigroups. 

Theorem 2.[1] A variety of semigroup is closed with respect to retract extension. 

Theorem 3.[1] A semigroup  is Archimedean and contains at least one idempotent element if 
and only if it is an ideal extension of simple semigroup containing an idempotent by a nil 
semigroup. 

Theorem 4.[2]: A semigroup is paramedial and 0-simple if and only if it is a commutative group 
with a zero adjoined. 

Theorem 5.[3] A semigroup  is a medial Archimedean semigroup containing at least one 
idempotent element if and only if it is a retract extension of a rectangular abelian group by a medial 
nil-semigroup. 

 

2.Paramedial Archimedean semigroup 

In this section we investigate paramedial Archimedean semigroups containing idempotents. 

Proposition 1. For a paramedial semigroup  ,  if and only if    and 
 for some . 

Proof: Define a relation  on  by if  and  for some . 

Refleksivity and symmetry of  are obvious. 

No we proof  transitivity and compatibility: 

Let ,  and . Then , ,  and  

for some . 

Thus . 

Similarly, . Thus . 

The proof that is compatible involves four statements like the following: 

. 

It now follows easily that  is a semilattice congruence, for 
 and  for every   

Hence, . 
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Conversely, if   then   and   for some  and . Thus  

. Therefore . Hence . 

It rimeans to show that a congruence class  of  is an Archimedean semigroup. By what was 
mentioned in the introduction,  for every . But is paramedial semigroup and we 
therefore can apply the explicit formulation of  above. Thus  is Archimedean. 

For paramedial semigroup , we will call the congruence classes of  modulo  the Archimedean 
components of  and will say that  is a semilattice  of Archimedean semigroups and write 

 

 

where  and . 

Proposition 2. Let  be a paramedial semigroup.  is an Archimedean semigroup possessing an 
idempotent if and only if contains an ideal   which is both a rectangular group and a root of . 

Proof: Let  be Archimedean with an indempotent. By proposition1,  contains a simple ideal  
which is a root of . 

Let  be idempotents of   such that  Since  is simple,  for some . 

Thus  

So every idempotent of  is primitive, and hence   is a completely simple semigroup. But the 
idempotents of  paramedial semigroup form  subsemigroup. 

So,   is a rectangular group 

Since a rectangular group is simple with an idempotent, the converse is a trivial consecuence of 
proposition1. 

Corollary1. Let  be a paramedial semigroup and  is an Archimedean semigroup and  ideal, 
which is a root of . 

If  is the set of idempotents of ,  then  is a rectangular band and is an abelian group for 
all  and    for all   

Proof:  All idempotents of   are in . But if ,  -group and  - a rectangular band, then 
 is isomorphic to the set of all idempotents of  . 

Hence  is isomorphic to the rectangular band . Furthermore, since  is paramedial is 
abelian. 

However, . Thus    for all   

Lema 2.  A semigroup is paramedial and Archimedean containing at least one idempotent element 
if and anly if it is ideal exstension of a commutative group by an paramedial nil-semigroup. 
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Proof:  Let  be a paramedial Archimedean semigroup containing at least one idempotent 
element. 

As  is also a medial by lema 1.[3] it is an ideal extension of a rectangular abelian group  by a 
medial nil-semigroup . 

(see theorem 5[3]). Since  is simple and paramedial then by theorem 4[2] it is a commutative 
group. It is evident that  is also a paramedial semigroup. 

Conversely, assume that the semigroup  is an ideal extension of a commutative group  by an 
paramedeal nil-semigroup . 

Then by theorem 3[1],  is an Archimedean semigroup with an idempotent element. It is easy to 
see that    is a retract homomorphism of onto ,where   denotes the identity of  .As 
the paramedial semigroup form a variety,  is paramedial (see theorem 2.[1]). 

 

References 

[1] Attila Nagy, Special classes of semigroups, Kluwer Academic Publishers-London(2001). 
[2] Petar V. Protic, Some remarks on paramedial semigroups, Matematicki vesnik 67, (2015) . 
[3] N. Sawatraska; Ch. Namnak, Some remarks on paramedial semigroups and medial semigroups, Thai journal 
of mathematics (2019). 
[4]S. Bogdanovic, M. Ciric,   Power semigroups that are Archimedean, Filomat (1995) Nish.  
[5] T. Tamura, Power semigroups, Math.Japan.(1984). 
[6] A. H. Clifford an The algebraic theory of semigroups
American Mathematical Society, Providence, R.I., 1961. 
 

  
 
 
 
 
 
 
 
 
 
 
 
  


